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Who should take this tutorial?
● This tutorial will present the main problems and approaches 

in interpreting and analyzing modern NLP models
● Target audience

○ NLP researchers and practitioners
○ We assume familiarity with mainstream NLP models and tasks 
○ Anyone who wants to analyze NLP models or think critically 

about using current interpretation methods 

● We aim to highlight key studies in the field 
○ We do not aim to be exhaustive 
○ We provide pointers to important references
○ We emphasize methodological limitations and opportunities 



End-to-End Learning
● The predominant approach in NLP these days is end-to-end learning
● Learn a model f : x → y, which maps input x to output y  



End-to-End Learning
● For example, in machine translation we map a source sentence to a target 

sentence, via a deep neural network:



A Historical Perspective
● Compare this with a traditional statistical approach to MT, based on multiple 

modules and features:



End-to-End Learning
● The predominant approach in NLP these days is end-to-end learning, where 

all parts of the model are trained on the same task:



How can we open the black box?
● Given f : x → y, we want to ask some questions about f

○ What is its internal structure?
○ How does it behave on different data?
○ Why does it make certain decisions?
○ When does it succeed/fail?
○ ... 



Why should we care?
● Much deep learning research:

○ Trial-and-error, shot in the dark
○ Better understanding → better systems
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Why should we care?
● Much deep learning research:

○ Trial-and-error, shot in the dark
○ Better understanding → better systems

● Accountability, trust, and bias in machine learning
○ “Right to explanation”, EU regulation
○ Life threatening situations: healthcare, autonomous cars
○ Better understanding → more accountable systems

● Neural networks aid the scientific study of language (Linzen 2019) 
○ Models of human language acquisition
○ Models of human language processing
○ Better understanding → more interpretable models 

https://doi.org/10.1353/lan.2019.0015


Goal for today

1. Understand the toolbox of interpretability methods in NLP

2. Have an idea which tool to apply to a problem



Analysis Questionnaire
What is the goal of the study? 

Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome?

Who is your user or target group?
 ML or NLP Expert/ Domain Expert / Student / Lay User of the System ...

How much domain/ model knowledge do they have?



Outline
● Structural analyses            Yonatan
● Behavioral analyses           Ellie
● Interaction + Visualization  Sebastian
● Other methods
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Structural Analyses
● Let f : x → y be a model mapping an input x to an output y 

○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Some questions we might want to ask:
○ What is the role of different components of f? 
○ What kind of information do different components capture? 
○ More specifically: Does components A know something about property B?
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● Let f : x → y be a model mapping an input x to an output y 

○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Analysis via a probing classifier
○ Assume a corpus of inputs x with linguistic annotations z
○ Generate representations of x from some part of the model f, for example representations fl(x) 

at a certain layer
○ Train another classifier g : fl(x) → z that maps the representations fl(x) to the property z
○ Evaluate the accuracy of g as a proxy to the quality of representations fl(x) w.r.t property z



Structural Analyses
● Let f : x → y be a model mapping an input x to an output y 

○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Analysis via a probing classifier
○ Assume a corpus of inputs x with linguistic annotations z
○ Generate representations of x from some part of the model f, for example representations fl(x) 

at a certain layer
○ Train another classifier g : fl(x) → z that maps the representations fl(x) to the property z
○ Evaluate the accuracy of g as a proxy to the quality of representations fl(x) w.r.t property z

● In information theoretic terms:
○ Set h = f(x) and recall that I(h; z) = H(z) - H(z | h)
○ Then the probing classifier minimizes H(z | h), or maximizes I(h, z) 



Milestones (partial list) 

f x y g z

Köhn 2015 Word embedding Word Word Linear POS, morphology

Ettinger et al. 2016 Sentence 
embedding

Word, 
sentence

Word, 
sentence

Linear Semantic roles, 
scope

Shi et al. 2016 RNN MT Word, 
sentence

Word, 
sentence

Linear / tree 
decoder

Syntactic features, 
tree

Adi et al. 2017 
Conneau et al. 2018 

Sentence 
embedding

Sentence Sentence Linear, MLP Surface, syntax, 
semantics

Hupkes et al. 2018 RNN, treeRNN five plus 
three

eight Linear Position, 
cumulative value

Hewitt+Manning 2019 ELMo, BERT Sentence Sentence Linear Full tree 

https://www.aclweb.org/anthology/D15-1246.pdf
https://www.aclweb.org/anthology/W16-2524.pdf
https://www.aclweb.org/anthology/D16-1159.pdf
https://arxiv.org/pdf/1608.04207.pdf
https://www.aclweb.org/anthology/P18-1198.pdf
https://jair.org/index.php/jair/article/view/11196/26408
https://www.aclweb.org/anthology/N19-1419.pdf


Example Results
● Numerous papers use this methodology to study:

○ Linguistic phenomena (z): phonology, morphology, syntax, semantics
○ Network components (f): word embeddings, sentence embeddings, hidden states, attention 

weights, etc.

● We’ll show example results on machine translation
● Much more related work reviewed in our survey (Belinkov and Glass 2019)

https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00254


Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y
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Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y

● Morphology: 
○ A challenge for machine translation, previously solved with feature-rich approaches. 
○ Do neural networks acquire morphological knowledge? 

● Experiment
○ Take fl(x), an RNN hidden state at layer l
○ Predict z, a morphological tag (verb-past-singular-feminine, noun-plural, etc.)
○ Compare accuracy at different layers l 



Example: Machine Translation



Machine Translation: Morphology

● Lower is better
● But deeper models translate better → what’s going on in top layers?



Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y



Probing Classifiers Questionnaire
What is the goal of the study? 

Scientific / Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome? Performance comparisons

Who is your user or target group?
 ML or NLP Expert / Domain Expert / Student / Lay User of the System ...

How much domain/ model knowledge do they have? Enough to understand the model and problem domain



Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y

● Syntax: 
○ A challenge for machine translation, previously solved with hierarchical approaches. 
○ Do neural networks acquire syntactic knowledge? 



Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y

● Syntax: 
○ A challenge for machine translation, previously solved with hierarchical approaches. 
○ Do neural networks acquire syntactic knowledge? 

● Experiment
○ Take [fl(xi) ; f

l(xj)], RNN hidden states of words xi and xj, at layer l
○ Predict z, a dependency label (subject, object, etc.) between words xi and xj
○ Compare accuracy at different layers l 



Machine Translation: Syntactic Relations

● Higher is better



Machine Translation: Semantic Relations

● Higher is better



Hierarchies



Hierarchies



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Suppose we get an accuracy, what should we compare it to?
○ Many studies focus on relative performance (say, comparing different layers)
○ But it may be desirable to compare to external numbers
○ Baselines: Often, compare to using static word embeddings (Belinkov et al. 2017) or random 

features (Zhang and Bowman 2018)
■ This tells us that a representation is non-trivial

○ Skylines: Sometimes, report the state-of-the-art on the task, or train a full-fledged model
■ This can tell us how much is missing from the representation

https://www.aclweb.org/anthology/I17-1001.pdf
https://www.aclweb.org/anthology/W18-5448.pdf


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Suppose we get an accuracy, what should we compare it to?
○ Hewitt and Liang (2019) define control tasks: tasks that only g can learn, not f

■ Specifically, assign a random label to each word type
○ A “good” probe should be selective: high linguistic task accuracy, low control task accuracy
○ Example

■ Linear vs. MLP
■ Accuracy vs. selectivity

https://www.aclweb.org/anthology/D19-1275.pdf
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Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Common wisdom: use a linear classifier to focus on the representation and not the probe
○ Anecdotal evidence: non-linear classifiers achieve better probing accuracy, but do not change 

the qualitative patterns (Conneau et al. 2018, Belinkov 2018)

https://www.aclweb.org/anthology/P18-1198.pdf
http://people.csail.mit.edu/belinkov/assets/pdf/thesis2018.pdf
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● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it 

will maximize the mutual information I(h; z), where f(x)=h

https://arxiv.org/abs/2004.03061
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● What is g? What is the relation between the probe g and the model f?
○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it 

will maximize the mutual information I(h; z), where f(x)=h
○ They also show that I(x; z) = I(h; z) (under mild assumptions)

■ Thus the representation f(x) := h contains the same amount of information about z as x
○ Does this make the probing endeavor obsolete?
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Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it 

will maximize the mutual information I(h; z), where f(x)=h
○ They also show that I(x; z) = I(h; z) (under mild assumptions)

■ Thus the representation f(x) := h contains the same amount of information about z as x
○ Does this make the probing endeavor obsolete?
○ Not necessarily: 

■ We would still like to know how good a representation is in practice
■ We can still ask relative questions about ease of extraction of information

https://arxiv.org/abs/2004.03061


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Voita and Titov (2020) measure both probe complexity and probe quality 
○ Instead of measuring accuracy, estimate the minimum description length: how many bits are 

required to transmit z knowing f(x), plus the cost of transmitting g
○ Variational code: incorporate cost of transmitting g
○ Online code: incrementally train g on more data

 

https://arxiv.org/pdf/2003.12298.pdf


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Voita and Titov (2020) measure both probe complexity and probe quality 
○ Instead of measuring accuracy, estimate the minimum description length: how many bits are 

required to transmit z knowing f(x), plus the cost of transmitting g
○ Variational code: incorporate cost of transmitting g
○ Online code: incrementally train g on more data
○ Example

■ Layer 0 control: control accuracy is high (96.3)
but at the expense of codelength (267) 

 

https://arxiv.org/pdf/2003.12298.pdf
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Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Correlation vs. causation
○ The common setup only measures correlation between representation f(x) and property z
○ It is not directly linked to the behavior of the model f on the task it was trained on, that is, 

predicting y
○ Some work found negative/lack of correlation between probe and task quality 

(Vanmassenhove et al. 2017, Cífka and Bojar 2018)
○ An alternative direction: intervene in the model representations to discover causal effects on 

prediction (Giulianelli et al. 2018, Bau et al. 2019, Vig et al. 2020, Feder et al. 2020)

https://clinjournal.org/clinj/article/view/73
https://www.aclweb.org/anthology/P18-1126/
https://www.aclweb.org/anthology/W18-5426/
https://arxiv.org/abs/1811.01157
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2005.13407


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Giulianelli et al. 2018 train a classifier to predict number from LSTM states
○ Then backprop classifier gradients to change LSTM states so they predict number better

https://www.aclweb.org/anthology/W18-5426/


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Giulianelli et al. 2018 train a classifier to predict number from LSTM states
○ Then backprop classifier gradients to change LSTM states so they predict number better
○ They find:

■ improved probing accuracy, little effect on LM perplexity
■ strong effect on an LM agreement test  

○ Important connection between the classifier g
and the behavior of the model f 

https://www.aclweb.org/anthology/W18-5426/


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Bau et al. 2019 study the role of individual neurons in MT
○ They identify important neurons and intervene in their behavior
○ Change their activations based on activation statistics over a corpus

■ Move towards the mean activation over a property (say, verb tense) 

https://arxiv.org/abs/1811.01157


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Bau et al. 2019 study the role of individual neurons in MT
○ They identify important neurons and intervene in their behavior
○ Change their activations based on activation statistics over a corpus

■ Move towards the mean activation over a property (say, verb tense) 
○ Successfully influence the translation of tense from past to present (67% success rate)
○ Less successful with influencing gender and number (20-30%)

https://arxiv.org/abs/1811.01157


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Vig et al. 2020 use causal mediation analysis to interpret gender bias in language models
○ Define interventions via text edit operations and measure counterfactual outcomes

■ p(she | the nurse said that) vs. p(she | the man said that)

https://arxiv.org/abs/2004.12265


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Vig et al. 2020 use causal mediation analysis to interpret gender bias in language models
○ Define interventions via text edit operations and measure counterfactual outcomes

■ p(she | the nurse said that) vs. p(she | the man said that)
○ Examine mediators: neurons and attention heads 
○ Calculate direct and indirect effects 

https://arxiv.org/abs/2004.12265


Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Alternative: causal interpretation via intervention
○ Vig et al. 2020 use causal mediation analysis to interpret gender bias in language models

https://arxiv.org/abs/2004.12265
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● Structural analyses
● Behavioral analyses
● Interaction + Visualization
● Other methods



Behavioral Analyses
● Usually, we measure the average-case performance of f : x → y on a test set 

{x,y}, drawn uniformly at random from some text corpus
● However, this can reward models for performing well on common 

phenomena, and hide the fact that they perform poorly on “the tail”
● Challenge sets, a.k.a test suites aim to cover diverse phenomena

○ Systematicity 
○ Exhaustivity 
○ Control over data
○ Inclusion of negative data

● Thus they facilitate fine-grained analysis of model performance
● And they have a long history in NLP evaluation (Lehmann et al. 1996, Cooper 

et al. 1996, …)
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Behavioral Analyses
● Key idea: Design experiments that allow us to make inferences about the 

model’s representation based on the model’s behavior. 

Brett knew what many 
waiters find

✔

Brett knew that many 
waiters find.

✖
Warstadt et al. (2020)



Behavioral Analyses
● Key idea: Design experiments that allow us to make inferences about the 

model’s representation based on the model’s behavior. 
● As with theories about human language representations: Claims about how a 

model works must be consistent with both physiological and behavioral data  

On the semantics of phi features on pronouns. Sudo (2012).

Behavioral

The Brain Basis of Language Processing: From Structure to Function. 
Friederici (2011)

Structural



Behavioral Analyses
● Benefits:

○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, 
neural, feature-engineered) as long as it explains the data

○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
○ Only tells us that a model did/didn’t solve a task; few insights into how the model solved the 

task, or why it failed to
○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
○ Risk of overfitting to the challenge sets
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● Benefits:

○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, 
neural, feature-engineered) as long as it explains the data

○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
○ Practical--not whether the model represents a feature, but whether it uses it in the right way
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Challenge Sets Questionnaire
What is the goal of the tool? 

Scientific / Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome? (Relative) accuracy across different challenge sets 

Who is your user?
 ML or NLP Expert/ Domain Expert / Student / ...

How much domain/model knowledge do they have? Knowledge of target phenomena, but no model knowledge

The answers will inform the following implementation questions:
Does the tool require interaction with the model? With the data? Model treated as a “black box”
Can you change the model structure or model decisions? No



● See recent Belinkov & Glass survey for a categorization of many studies
● Tasks 

○ Especially machine translation and natural language inference

● Linguistic phenomena
○ Morphology, syntax, lexical semantics, predicate-argument structure

● Languages
○ Mostly focusing on English, some artificial languages, not much work on other languages

● Scale
○ Ranging from hundreds to many thousands

● Construction method
○ Either manual or programmatic

Behavioral Analyses

https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00254


Tasks used as probing tasks
● Ideally, simple task interfaces which can support lots of model types
● Ideally, minimal need for training/finetuning on top of model being “probed”



Task Example Typical Use Strengths Limitations E.g.
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Syntactic phenomena No additional training 
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LM

Often uses ppl, so best 
for left-to-right language 
models. Harder to use 
for newer variants.

Linzen et 
al. (2016)
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models. Harder to use 
for newer variants.
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al. (2016)

Acceptability The boy by the boats 
[is/*are] smiling.

Syntactic and semantic 
phenomena

More flexible than LM 
across architectures; 
well studied in ling.

Usually requires 
additional training on top 
of LM. 

Warstadt et 
al. (2020)

NLI The boy is smiling. -> 
The boy [is/*is not] 
happy.

Semantics/pragmatics/
world knowledge 

Flexible, easy to 
“recast” many tasks to 
NLI; long history

Often awkward 
sentences/confounds; 
low human agreement

White et al. 
(2017)

https://www.aclweb.org/anthology/Q16-1037.pdf
https://www.aclweb.org/anthology/Q16-1037.pdf
https://arxiv.org/pdf/1912.00582.pdf
https://arxiv.org/pdf/1912.00582.pdf
https://www.aclweb.org/anthology/I17-1100.pdf
https://www.aclweb.org/anthology/I17-1100.pdf


Task Example Typical Use Strengths Limitations E.g.

LM
/Generation?

The boy by the boats 
[is/*are] smiling.

Syntactic phenomena No additional training 
on top of pretrained 
LM

Often uses ppl, so best 
for left-to-right language 
models. Harder to use 
for newer variants.

Linzen et 
al. (2016)

Acceptability The boy by the boats 
[is/*are] smiling.

Syntactic and semantic 
phenomena

More flexible than LM 
across architectures; 
well studied in ling.

Usually requires 
additional training on top 
of LM. 

Warstadt et 
al. (2020)

NLI The boy is smiling. -> 
The boy [is/*is not] 
happy.

Semantics/pragmatics/
world knowledge 

Flexible, easy to 
“recast” many tasks to 
NLI; long history

Often awkward 
sentences/confounds; 
low human agreement

White et al. 
(2017)

Generation Dante was born in 
[Mask]

Semantics/pragmatics/
world knowledge 

Can be more natural 
than NLI; incorporates 
more context

Hard to auto evaluate, 
esp. beyond one 
word/factoid questions

Petroni et 
al. (2019)
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Task Example Typical Use Strengths Limitations E.g.

LM
/Generation?

The boy by the boats 
[is/*are] smiling.

Syntactic phenomena No additional training 
on top of pretrained 
LM

Often uses ppl, so best 
for left-to-right language 
models. Harder to use 
for newer variants.

Linzen et 
al. (2016)

Acceptability The boy by the boats 
[is/*are] smiling.

Syntactic and semantic 
phenomena

More flexible than LM 
across architectures; 
well studied in ling.

Usually requires 
additional training on top 
of LM. 

Warstadt et 
al. (2020)

NLI The boy is smiling. -> 
The boy [is/*is not] 
happy.

Semantics/pragmatics/
world knowledge 

Flexible, easy to 
“recast” many tasks to 
NLI; long history

Often awkward 
sentences/confounds; 
low human agreement

White et al. 
(2017)

Generation Dante was born in 
[Mask]

Semantics/pragmatics/
world knowledge 

Can be more natural 
than NLI; incorporates 
more context

Hard to auto evaluate, 
esp. beyond one 
word/factoid questions

Petroni et 
al. (2019)

MT The repeated calls 
from his mother
should have alerted 
us. / Les appels rep´ 
et´ es de sa m ´ ere 
devraient `
nous avoir alertes.

Multilingual 
morpho-/lexico-/syntax 
(e.g. cross-lingual 
agreement)

Only way of 
specifically probing 
cross-lingual systems

Often relies on manual 
eval (though recent 
approaches use 
probabilities similar to in 
LM tasks)

Isabelle et 
al. (2017)

https://www.aclweb.org/anthology/Q16-1037.pdf
https://www.aclweb.org/anthology/Q16-1037.pdf
https://arxiv.org/pdf/1912.00582.pdf
https://arxiv.org/pdf/1912.00582.pdf
https://www.aclweb.org/anthology/I17-1100.pdf
https://www.aclweb.org/anthology/I17-1100.pdf
https://www.aclweb.org/anthology/D19-1250.pdf
https://www.aclweb.org/anthology/D19-1250.pdf
https://www.aclweb.org/anthology/D17-1263.pdf
https://www.aclweb.org/anthology/D17-1263.pdf


Experimental Designs
● Tightly Controlled
● Loosely Controlled
● Adversarial Examples



● Minimal Pairs/Counterfactuals
○ Pros: Few confounds, more easy to attribute difference to the phenomena itself
○ Cons: Can be hard to generate; may not exist in a way that is natural
○ Good for phenomena that manifest neatly in the grammar (syntactic agreement, studying 

gender bias), but less so for complex phenomena (common sense/world knowledge) 
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○ Good for phenomena that manifest neatly in the grammar (syntactic agreement, studying 
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● Minimal Pairs/Counterfactuals
● Pros: Few confounds, easier to attribute difference to the phenomena itself
● Cons: Can be hard to generate; may not exist in a way that is natural
● Good for phenomena that manifest neatly in the grammar (SV agreement, 

gender bias), but less so for complex phenomena (“common sense”) 

Experimental Designs: Tightly Controlled 

Subj.-Verb Agree.: Marvin and Linzen (2018)

Veridicality: White et al. (2018)
Someone {knew, didn’t know} that a particular thing happened.
Someone {was, wasn’t} told that a particular thing happened.

Did that thing happen?

Gender Bias: Rudinger et al. (2018)
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● Average over sets with vs. without property of interest
● Pros: Can consist of naturalistic data; can generate larger test sets
● Cons: Contain artifacts, harder to attribute differences to target phenomena

Experimental Designs: Loosely Controlled
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GLUE Diagnostic Set: Wang et al. (2019)
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● Design data sets (usually using minimal pairs or “perturbations”) that 
specifically emphasize a model’s weaknesses

● Pros: Practical analysis of failures; can be used as training to improve model
● Cons: Sets age quickly; are model/data specific; “whack-a-mole” approach

Experimental Designs: Adversarial Examples
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● Sources of Data
○ Sentences drawn from existing corpora 
○ Sentences drawn from existing benchmark sets/test suites
○ Templates
○ Manual Generation

● Example/Label Generation
○ Labels are given by-definition (e.g. if using templates or manual generation)
○ Automatically manipulate sentences and assume heuristic labels (+/- human filtering)
○ Purely automatic (e.g. adversarial)
○ Purely manual labeling (e.g. human generated examples)

Construction Methods
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Construction Methods: Entirely Manual
● Examples: Build-It-Break-It, Adversarial NLI

https://www.aclweb.org/anthology/W17-5401.pdf
https://arxiv.org/pdf/1910.14599.pdf
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Construction Methods: Entirely Manual
● Examples: Build-It-Break-It, Adversarial NLI

Nie et al. (2019)

https://www.aclweb.org/anthology/W17-5401.pdf
https://arxiv.org/pdf/1910.14599.pdf
https://arxiv.org/pdf/1910.14599.pdf


Construction Methods: Semi-Automatic
● Manipulate Existing Corpora, Filter with Crowdsourcing

○ Examples: Poliak et al. (2018), Kim et al. (2019)

https://www.aclweb.org/anthology/D18-1007/
https://www.aclweb.org/anthology/S19-1026/


● Manipulate Existing Corpora, Filter with Crowdsourcing
○ Examples: Ross and Pavlick (2018), Kim et al. (2018), Poliak et al. (2018)

Construction Methods: Semi-Automatic

https://www.aclweb.org/anthology/D19-1228.pdf
https://www.aclweb.org/anthology/S19-1026/
https://www.aclweb.org/anthology/D18-1007/


Everyone knows that 
the CPI is the most 
accurate. -> The CPI is 
the most accurate

● Manipulate Existing Corpora, Filter with Crowdsourcing
○ Examples: Ross and Pavlick (2018), Kim et al. (2018), Poliak et al. (2018)

Everyone knows that the CPI is the most 
accurate. -> The CPI is the most accurate

I know that I was born to succeed -> I 
was born to succeed

Crowdsource to confirm human labels match expected labels
                         

Construction Methods: Semi-Automatic

Find sentences in existing corpus containing 
target phenomenon

Everyone knows that the CPI is 
the most accurate.

I know that I was born to succeed

Apply automatic manipulations and assign labels

Everyone knows that the CPI is the most 
accurate. -> The CPI is the most accurate

I know that I was born to succeed -> I 
was born to succeed

Final, vetted corpus

https://www.aclweb.org/anthology/D19-1228.pdf
https://www.aclweb.org/anthology/S19-1026/
https://www.aclweb.org/anthology/D18-1007/


● Hand-crafted templates that produce known labels
○ Examples: Ettinger et al. (2018), McCoy et al. (2019)

Construction Methods: Semi-Automatic

https://www.aclweb.org/anthology/C18-1152.pdf
https://www.aclweb.org/anthology/P19-1334.pdf


● Hand-crafted templates that produce known labels
○ Examples: Ettinger et al. (2018), McCoy et al. (2019)

Construction Methods: Semi-Automatic

McCoy et al. (2019)

https://www.aclweb.org/anthology/C18-1152.pdf
https://www.aclweb.org/anthology/P19-1334.pdf
https://www.aclweb.org/anthology/P19-1334.pdf


Construction Methods: Fully Automatic
● Examples: Ebrahimi et al. (2018), Wallace et al. (2019)

https://www.aclweb.org/anthology/P18-2006.pdf
https://arxiv.org/pdf/1908.07125.pdf
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Construction Methods: Fully Automatic
● Examples: Ebrahimi et al. (2018), Wallace et al. (2019)

Wallace et al. (2019)

https://www.aclweb.org/anthology/P18-2006.pdf
https://arxiv.org/pdf/1908.07125.pdf
https://arxiv.org/pdf/1908.07125.pdf
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● Availability

○ Limited coverage of tasks and languages
○ Need to expand beyond English and to 

more NLP tasks
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Challenge Sets: Limitations
● Availability

○ Limited coverage of tasks and languages
○ Need to expand beyond English and to 

more NLP tasks

● Methodology
○ What does failure on a challenge set tell us?
○ Who is to blame, the model or its training data? 
○ Lie et al. (2019) fine-tune a model on a few 

challenge set examples and re-evaluate
○ Rozen et al. (2019) diversify both the 

training and test data
○ Geiger et al. (2019) propose method for 

determining whether a generalization task is “fair”

https://www.aclweb.org/anthology/N19-1225.pdf
https://www.aclweb.org/anthology/K19-1019.pdf
https://www.aclweb.org/anthology/D19-1456/


Outline
● Structural analyses
● Behavioral analyses
● Interaction + Visualization
● Other methods



How many circles do you see?
Slide inspired by 
Hendrik Strobelt

http://hendrik.strobelt.com


Visualization can help you understand larger patterns



BUT… Visualization can lie. It was actually 17 🙃



Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations

○ Why do we want interactive visualizations?
○ Example: Identifying neuron purpose
○ Categorizing research in visualization
○ Hands-on with a simple attention visualization
○ Future challenges and limitations

● Other methods



Visual Analytics

[Keim et al., 2009]

“The goal of Visual Analytics is to make our way of processing 
data and information transparent for an analytic discourse. 

The visualization of these processes will provide the means of 
communicating about them”

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00272779/file/VAChapter_final.pdf


The role of interaction and visualization

Exploration
I wonder what neuron values represent?

Hypothesis
Neurons in a layer learn about POS tags.

Conclusion
Neurons in layer X learn parsing to Y%.

structural/behavioral testing

“playing” with model to form hypothesis

Revised Hypothesis
Neurons 3, 287, and 850 learn about NP.

New Conclusion
These neurons identify NP to Y%.

structural/behavioral testing

“cheap” tests in the interface



… reduce the exploration space when it is too large for brute-force methods

[Sercu et al., 2019]

    Why? - Interactive methods help...

https://openreview.net/pdf?id=Hkl8EILFdN


… to generate hypotheses about model behavior or a dataset

[Wexler et al., 2019]

    Why? - Interactive methods help...

https://arxiv.org/abs/1907.04135


    Why? - Interactive methods help...

… asking counterfactual “what if” question to the model and data

[Krause et al., 2016]

https://dl.acm.org/doi/pdf/10.1145/2858036.2858529


    Why? - Interactive methods help...

… understand difficult concepts

[Vaswani et al., 2017]

A

B

https://arxiv.org/abs/1706.03762


    Why? - Interactive methods help...

… understand difficult concepts

[Vig, 2019]

A

B

C

https://arxiv.org/abs/1906.05714


“A key element of the visualization approach is its ability to generate 
trust in the user. Unlike pure machine learning techniques, in a data 
visualization the user “sees” the data and information as a part of the 
analysis. 

When the visualization is interactive, the user will be part of the loop 
and involved in driving the visualization. In such a context, the 
development of a mental model goes hand in hand with the 
visualization.“

[Endert et al., 2018]

https://arxiv.org/pdf/1802.07954.pdf


Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations

○ Why do we want interactive visualizations?
○ Example: Identifying neuron purpose
○ Categorizing research in visualization
○ Hands-on with a simple attention visualization
○ Future challenges and limitations

● Other methods



Visualizing and Understanding Recurrent Networks
[Karpathy, et al.’16] 

Motivation: finding neurons with a purpose

Can we do this interactively? Can we do this for groups of neurons?
Exhaustive search is in O(n!).

https://arxiv.org/pdf/1506.02078


Interactive Visualization Questionnaire
What is the goal of the tool? 

Scientific / Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome? Generated hypotheses about model behavior

Who is your user?
 ML or NLP Expert/ Domain Expert / Student / ...

How much domain/ model knowledge do they have? Enough to understand metadata

The answers will inform the following implementation questions:
Does the tool require interaction with the model? With the data? Needs to interact with extracted data
Can you change the model structure or model decisions? No



of the first aircraft is set



of the first aircraft is set

Issues

Does not scale to large dhid.

Hidden states are position-invariant.

Does not allow investigation of 
neuron groups.

No filtering.

No tying to meta-data 
(like POS-tags, nesting, etc.)



Consider a text with words w1, …, wn. 

Let ht be a hidden state vector with dhid dimensions at timestep t. 

Let D be the set of of possible hidden state indices. 
A selection S ⊆ D is a subset of the indices. 

For a span (a,b) in the text, compute S as the set of neurons 
with an activation above a threshold l:

Example: finding neurons with a purpose



[Strobelt, Gehrmann et al. ‘16]

https://arxiv.org/pdf/1606.07461.pdf


You have a fast selection interface, now what?

Following structural analysis, we could train a probe on only information in S. 
But this is costly and thus doesn’t allow rapid hypothesis testing. 

An interactive system can help by quickly rejecting hypotheses... 





[Demo Link]

http://lstm.seas.harvard.edu


Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations

○ Why do we want interactive visualizations?
○ Example: Identifying neuron purpose
○ Categorizing research in visualization
○ Hands-on with a simple attention visualization
○ Future challenges and limitations

● Other methods



Understand - Diagnose - Refine

Visual analytics in deep learning: 
An interrogative survey for the next frontiers. 
[Hohman et al. ‘18]

Architect - Trainer - End-User

User+Task analysis

LSTMVis: A Tool for Visual Analysis of Hidden State 
Dynamics in Recurrent Neural Networks
[Strobelt, Gehrmann, et al. ‘16]

Towards better analysis of machine learning models: 
A visual analytics perspective. 
[Liu et al.‘17]

https://arxiv.org/pdf/1801.06889.pdf
https://arxiv.org/pdf/1606.07461.pdf
https://www.sciencedirect.com/science/article/pii/S2468502X17300086


Task

Interactive
Observation

Passive 
Observation

Understanding 
Model Structure

Understanding 
Model Decisions

User

Model 
Involvement

Trainer

Architect

End-User

[Gehrmann, Strobelt, et al.’19] 

https://arxiv.org/abs/1907.10739


Examples: Passive Observation

The previous two parts of this tutorial 



Examples: Passive Observation

Understanding Model Structure

Exploring Neural Networks with Activation Atlases
[Carter, et al.’19] 

Visualizing Dataflow Graphs of Deep Learning 
Models in TensorFlow
[Wongsuphasawat et al. ‘18]

Understanding Model Decisions

“Why Should I Trust You?” Explaining the Predictions 
of Any Classifier
[Ribeiro et al. ‘16]

Rationalizing Neural Predictions
[Lei et al. ‘16]

Tools:
Captum
AllenNLP Interpret

https://distill.pub/2019/activation-atlas/
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://arxiv.org/pdf/1606.04155.pdf
https://captum.ai
https://allennlp.org/interpret


Examples: Passive Observation

Understanding Model Structure

Exploring Neural Networks with Activation Atlases
[Carter, et al.’19] 

Visualizing Dataflow Graphs of Deep Learning 
Models in TensorFlow
[Wongsuphasawat et al. ‘18]

Understanding Model Decisions

“Why Should I Trust You?” Explaining the Predictions 
of Any Classifier
[Ribeiro et al. ‘16]

Rationalizing Neural Predictions
[Lei et al. ‘16]

Tools:
Captum
AllenNLP Interpret

EMNLP 2020 Tutorial: Interpreting Predictions of NLP Models
Eric Wallace, Matt Gardner and Sameer Singh

https://distill.pub/2019/activation-atlas/
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://arxiv.org/pdf/1606.04155.pdf
https://captum.ai
https://allennlp.org/interpret


Examples: Interactive Observation



Examples: Interactive Observation

Understanding Model Structure

LSTMVis: A tool for visual analysis of hidden state 
dynamics in recurrent neural networks
[Strobelt, Gehrmann, et al.’16] 

Understanding Hidden Memories of Recurrent Neural 
Networks
[Ming et al. ‘17]

Understanding Model Decisions

RNNbow: Visualizing Learning via Backpropagation 
Gradients in Recurrent Neural Networks
[Cashman et al. ‘18]

A Workflow for Visual Diagnostics of Binary 
Classifiers using Instance-Level Explanations
[Krause et al. ‘17]

http://lstm.seas.harvard.edu/
https://arxiv.org/pdf/1710.10777.pdf
http://www.cs.tufts.edu/~remco/publications/2018/CGA2018-RNNbow.pdf
https://arxiv.org/pdf/1705.01968.pdf


Guidelines for Human-AI Interaction 
[Amershi et al. ‘19]

Machine Learning as a UX Design Material: 
How Can We Imagine Beyond Automation, 
Recommenders, and Reminders?
[Yang et al. ‘18]

Agency plus automation: 
Designing artificial intelligence into interactive systems
[Heer, ‘19]

Beyond Accuracy: The Role of Mental Models in 
Human-AI Team Performance
[Bansal et al. 19]

Human Evaluation of Models Built for Interpretability
[Lage et al., ‘19]

Many more in Proceedings of IEEE Vis, CHI, FAccT, IUI, and the VisXAI Workshop!

UX and Evaluation of Interaction and Visualization

Proxy Tasks and Subjective Measures Can Be 
Misleading in Evaluating Explainable AI Systems
[Buçinca et al. ‘20]

Principles of Explanatory Debugging to Personalize 
Interactive Machine Learning
[Kulesza et al. ‘15]

On Human Predictions with Explanations and 
Predictions of Machine Learning Models: 
A Case Study on Deception Detection
[Lai et al. 19]

https://dl.acm.org/doi/pdf/10.1145/3290605.3300233
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17471
https://www.pnas.org/content/116/6/1844
https://wvvw.aaai.org/ojs/index.php/HCOMP/article/view/5285
https://wvvw.aaai.org/ojs/index.php/HCOMP/article/view/5280
https://arxiv.org/pdf/2001.08298.pdf
https://dl.acm.org/doi/abs/10.1145/2678025.2701399
https://dl.acm.org/doi/10.1145/3287560.3287590


Outline
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● Behavioral analyses
● Interactive visualizations

○ Why do we want interactive visualizations?
○ Example: Identifying neuron purpose
○ Categorizing research in visualization
○ Hands-on with a simple attention visualization
○ Future challenges and limitations

● Other methods



Hands-on: developing an attention visualization



Interactive Visualization Questionnaire
What is the goal of the tool? 

Scientific / Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome? Better understanding of self-attention

Who is your user?
 ML or NLP Expert/ Domain Expert / Student / ...

How much domain/ model knowledge do they have? Very limited

The answers will inform the following implementation questions:
Does the tool require interaction with the model? With the data? Needs to extract attention at inference-time
Can you change the model structure or model decisions? No



checkout github: http://bit.ly/SIDN-AttnVis
    git clone https://github.com/SIDN-IAP/attnvis.git
   cd attnvis
install dependencies:
    conda env create -f environment.yml
get server to start without errors
    conda activate attnvis
  python server.py

The 1-day JS Prototype

http://bit.ly/SIDN-AttnVis


Challenges compared to seq2seq attention

Filtering: We now have 100+ heads

Aggregation: How do we combine multiple attentions? 

Key/Value/Query: What do we do with that? 





Step 1  Agree on an API between backend and visualization

{
  “tokens”: List[unicode string],
  “attention”: List[List[List[float32]]]
}

Token

Layer

Head

Note: this API does not support batching! 





api.py

��



api.py



api.py





server.py



server.py





client/index.html



client/index.html



1) .selectAll Select all .btn elements 
[btn1, btn2, …]

2) .data Set their data to the index value
[(btn1, 0), (btn2, 1), …]

3) .join create/delete elements to match data
[(btn1, 0), (btn2, 1), …]

4) .classed Conditionally set classes
5) .text Set their text to the index
6) .on Set their onClick handler

https://www.d3indepth.com/datajoins/



1) .selectAll Select all .btn elements 
[btn1, btn2, …]

2) .classed Conditionally set classes



Define a linear color scale variable 

1) .selectAll Get all attention head elements
2) .data Filter attn values to those of the 

selected token and bind to head elements 
3) .join Create/delete elements to match 

number of attention links
4) .attr Make sure all divs (even the just 

created one’s) have the correct class
5) .classed highlight the selected token
6) .style Set the color to the color scale value





Call for Reproducibility and Public Adoption:
open source with documentation
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Interaction and visualization matters at every step!

Understanding 
Communicating challenging concepts
Awareness of limitations and flaws of an approach

Forming hypotheses
It reduces the exploration space 
It helps us create hypotheses about data and models

Testing hypotheses
Counterfactual analysis
Connecting small insights to more expensive computation



More accessible through 
“playing” with a model

Much faster with interactive tools

The design of the infrastructure of a 
VA tool can be easily extensible to 
new models

Advantages of visual analytics

Understanding 

Forming hypotheses

Testing hypotheses



It is almost impossible to make tools useful across tasks.

Accepting a hypothesis is often not possible without a full investigation, 
a VA tool can thus often only be used as additional step in an analysis

The development of VA tools is expensive and time consuming.

Disadvantages of visual analytics

🕒💰

��

💯



Research opportunities in Interactive visualization

Evaluation for Usability and Utility
[Hohman et al., ‘18]

Tighter integration of model + interface development
[Liu et al. ‘17] [Heer, ‘19] [Gehrmann et al.’19] 

Causality and Counterfactual What-If Analyses
[Strobelt et al. ‘18]  [Wexler et al., ‘19] 

Human-in-the-Loop Model Correction
[Law et al. ‘20] [Cabrera et al. 19] [Lyytinen et al. ‘19]

https://arxiv.org/pdf/1801.06889.pdf
https://www.sciencedirect.com/science/article/pii/S2468502X17300086
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369770/
https://arxiv.org/abs/1907.10739
https://seq2seq-vis.io/
https://ieeexplore.ieee.org/abstract/document/8807255/
https://openreview.net/forum?id=6w-Vom-SQZ0
https://arxiv.org/abs/1904.05419
https://journals.sagepub.com/doi/abs/10.1177/0268396220915917


Research opportunities in Interactive visualization

Evaluation for Usability and Utility
[Hohman et al., ‘18]

Tighter integration of model + interface development
[Liu et al. ‘17] [Heer, ‘19] [Gehrmann et al.’19] 

Causality and Counterfactual What-If Analyses
[Strobelt et al. ‘18]  [Wexler et al., ‘19] 

Human-in-the-Loop Model Correction
[Law et al. ‘20] [Cabrera et al. 19] [Lyytinen et al. ‘19]

https://arxiv.org/pdf/1801.06889.pdf
https://www.sciencedirect.com/science/article/pii/S2468502X17300086
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369770/
https://arxiv.org/abs/1907.10739
https://seq2seq-vis.io/
https://ieeexplore.ieee.org/abstract/document/8807255/
https://openreview.net/forum?id=6w-Vom-SQZ0
https://arxiv.org/abs/1904.05419
https://journals.sagepub.com/doi/abs/10.1177/0268396220915917
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Other Topics
● Adversarial examples

○ Can point to model weaknesses
○ Challenges with text input (and output) 

■ How to calculate gradients
■ How to measure similarity to real examples

○ Survey papers: Belinkov and Glass 2019, Wang et al. 2019, Zhang et al. 2019

● Generating explanations
○ Annotated explanations (Zaidan et al. 2007, Zhang et al. 2016)
○ Rationales: erasure-based (Li et al. 2016), latent variables (Lei et al. 2016)
○ Self-explaining models (Narang et al. 2020), translating neuralese (Andreas et al. 2017)

● Formal languages as models of language
○ For example: can LSTMs learn context-free languages? 
○ Long line of research starting in the 1980s (Tonkes and Wiles 1997, Süzgün et al. 2019)

https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00254
https://arxiv.org/pdf/1902.07285v1.pdf
https://arxiv.org/abs/1901.06796v3
https://www.aclweb.org/anthology/N07-1033/
https://www.aclweb.org/anthology/D16-1076/
https://arxiv.org/pdf/1612.08220.pdf
https://www.aclweb.org/anthology/D16-1011/
https://arxiv.org/abs/2004.14546
https://arxiv.org/abs/1704.06960
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.3516
https://arxiv.org/abs/1906.03648


Conclusion
● Two broad approaches to interpreting neural NLP models:

○ Structural probing to analyze model representations and 
○ Challenge sets to analyze structure

● Visualization techniques can speed up exploration of both 
structural/behavioral properties of models 

● These techniques differ in their goals and assumptions
● Questionnaire can help assess contribution of a study or to choose 

appropriate approach for a given problem



Conclusion
● Open questions and directions for future work:

○ How can we make insights from these techniques actionable?
○ What is the connection between representations’ structure (measured by probing techniques, 

visualizations) and model decisions (measured by challenge sets)?
○ Can techniques like probing classifiers be adapted to measure something less correlational, 

and more causal?

● Want more? See EMNLP tutorial on Interpreting Predictions of NLP Models 
(Wallace, Gardner, and Singh)


