




Human-AI Collaboration for Natural
Language Generation with Interpretable

Neural Networks

a dissertation presented
by

Sebastian Gehrmann
to

The John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Computer Science

Harvard University
Cambridge, Massachusetts

May 2020



©2019 – Sebastian Gehrmann
Creative Commons Attribution License 4.0.
You are free to share and adapt these materials for any purpose
if you give appropriate credit and indicate changes.



Thesis advisors: Barbara J. Grosz, Alexander M. Rush Sebastian Gehrmann

Human-AI Collaboration for Natural Language Generation
with Interpretable Neural Networks

Abstract

Using computers to generate natural language from information (NLG) requires approaches that
plan the content and structure of the text and actualize it in fluent and error-free language. The typical
approaches to NLG are data-driven, which means that they aim to solve the problem by learning from
annotated data. Deep learning, a class of machine learning models based on neural networks, has
become the standard data-driven NLG approach. While deep learning approaches lead to increased
performance, they replicate undesired biases from the training data and make inexplicable mistakes.
As a result, the outputs of deep learningNLGmodels cannot be trusted. We thusneed todevelopways
in which humans can provide oversight over model outputs and retain their agency over an otherwise
automated writing task.

This dissertation argues that to retain agency over deep learning NLG models, we need to design
them as team members instead of autonomous agents. We can achieve these team member models
by considering the interaction design as an integral part of the machine learning model development.
We identify two necessary conditions of team member-models – interpretability and controllability.
The models need to follow a reasoning process such that human team members can understand and
comprehend it. Then, if humans do not agree with the model, they should be able to change the
reasoning process, and the model should adjust its output accordingly.

In the first part of the dissertation, we present three case studies that demonstrate how interactive
interfaces can positively affect how humans understand model predictions. In the second part, we
introduce a neural network-based approach to document summarization that directly models the se-
lection of relevant content. We show that, through this selection, a human user can control what part
of a document the algorithm summarizes. In the final part of this dissertation, we show that this de-
sign approach, coupled with an interface that exposes these interactions, can lead to a forth and back
between human and autonomous agents where the two actors collaboratively generate text. This dis-
sertation thus demonstrates how to develop models with these properties and how to design neural
networks as team members instead of autonomous agents.
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1
Introduction

Natural language generation (NLG) is the process of producing text from information. Typical NLG

problems include the summarization of long documents and the translation from one language to

another. Designing approaches for the generation of language with computers is challenging since

it requires approaches that plan the content and the structure of the text and actualize it in natural,

fluent, and error-free language. An autonomous system that can generate language in arbitrary con-

texts and across many different tasks needs to exhibit advanced reasoning skills and common-sense
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knowledge. For this reason, autonomous agents that are able to generate human-like language have

been regarded as the pinnacle of artificial intelligence (Turing, 1950).

A more attainable path toward autonomous NLG systems is to develop agents that aim to solve a

specific generation problem, for example, a system that summarizes documents but has no ability to

translate. Most current approaches to specific NLG problems are data-driven. They aim to solve the

problem by learning from annotated data. Traditional data-driven approaches use a composition of

independent functions to perform linguistically motivated tasks. These tasks range from the planning

of the content of a text to the actualization of the plan in natural language. More recently, advances

in machine learning have given rise to deep learning-based approaches. Deep learning, a family of

machine learning methods based on artificial neural networks, aims to approximate the solution to a

problem with a single powerful model. These complex models no longer break down a problem into

stages but instead learn the entire process at once. This shift toward deep learning approaches has lead

to significant performance improvements on many artificial intelligence tasks, including NLG.

As the performance of models that perform NLG tasks improves, one can imagine assistive inter-

faces in which a model suggests texts to writers. Consider the example of a journalist Anna who wants

to write an abstract for a long news article. She could request a summarization model to write it for

her, and the automation could decrease the time that she spends on writing abstracts and thus free up

time to spend on research for other articles. However, journalists have a moral obligation to report

accurately and objectively. If autonomous agents appropriate a part of their job, it is the journalists’

duty to provide oversight over the generated texts (Dörr and Hollnbuchner, 2017). Anna, therefore,

needs to trust that the generated text is accurate and follows the same structure they had in mind.

Unfortunately, deep learningmodels have been shown to be biased (Caliskan et al., 2017) andmake

potentially harmful mistakes (Hern, 2017). They are thus not trustworthy and humans who interact

with automatically generated text should not trust these models.

In their learning process, deep learning models acquire undesired properties of the training data,
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for example, discriminatory biases. This problem is amplified because current deep learning models

are not able to explain their decisions. They only consume an input and produce a textual output that

describes, translates, or compresses it. To address this problem, we need to introduce capabilities into

the models that enable humans to collaborate with them in generating text. The interactions with

a model need to be understandable by and intuitive to humans and help them to control the model

reasoning process. To enable the collaboration with a model, we argue that its reasoning process needs

to be (1) interpretable and (2) controllable by its users so that the model can act as an intelligent

partner to the human.

Since current deep learning models combine all the NLG planning steps into a single function,

their decisions are not always intuitive or understandable to a human reader. For a user of an assistive

interface to trust amodel, it is necessary that they canunderstand and interpret an explanationof how

it arrives at a prediction, especially when the model makes a mistake. Only with an understandable

reasoning process can users detect the inductive biases and know the limitations of the model.

Moreover, interpretability serves as a mediator for agency. As pointed out above, automation with-

out human oversight can lead to a sharp increase in the efficiency of a task. This increase comes at the

cost that humans have to give up their control over the automated process. According to Lai and Tan

(2019), to gain the benefits of automation while still retaining their agency, humans have to be able

to fully comprehend the model-reasoning process. Explanations can mediate between the efficiency

benefits and agency retention. However, an understandable reasoning process does not retain the full

agency over the automated process and is thus not sufficient for real-world tasks. Journalists, for ex-

ample, are expert writers and have a particular text layout in mind that they aim to follow during the

writing process. A model that automates the writing process might not follow the same plan when

it generates text. That means that even if the journalist could understand the model’s plan, there is

no mechanism to intervene and change the reasoning process to match that of the journalist. To in-

corporate the feedback that the journalist has and to retain that journalists agency over the writing
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process, the model needs to be controllable. A similar idea exists in human-robot interaction, where

a robot’s planning process should be fine-tuned through a dialogue with its human controller (Fong

et al., 2003). However, since deep learning models do not take discrete decisions along a reasoning

chain, it not possible to control them in ways that the more traditional models are. This leads to a dis-

joint nature of the human and machine writer in intelligent systems, where humans have to discard

or heavily post-edit machine-suggested text if it does not match their desired text layout or phrasing.

If models were controllable instead, the human writer could direct the model to follow their plan and

could thus be efficiently assisted by the model.

Again, consider the journalist Annawho aims towrite a summary of her article. She is familiarwith

the article and has an idea of what content is relevant for its summary. If she asks a model developed

with current approaches to suggest the first version of a summary, this model might select a part of the

article thatAnna believes is unimportant, leading to a summary that she does not like. Imagine instead

that she had a model that was both interpretable and controllable. Instead of a single suggestion, the

model presents a first version along with an understandable visual indication of the content it evalu-

ated as most relevant from the article. Anna can now judge for herself whether the model considered

the wrong content and can provide feedback to the model, specifying the content she thinks is more

important. The model, in turn, updates its reasoning process and suggests an alternative summary.

This new summary matches closely with Anna’s imagined summary, which means that she only has

to perform minor edits.

This thesis contributes to the interpretability and controllability of deep learning models, which

can be situated in the world of collaborative agents. Researchers working on AI, HCI, and visual-

ization have long advocated designing models as collaborative team members instead of unsupervised

agents. To that end, Grosz (1996) argued that the development of “intelligent, problem-solving part-

ners is an important goal in the science of AI”. Instead of emulating human behavior to replace peo-

ple altogether, the collaborative approach can leverage the strengths of both models and humans who
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work together to achieve shared goals. Terveen (1995) calls this approach the “human complementary

approach” which “improves human-computer interaction by making the computer a more intelligent

partner”. Collaboration centers the interaction design for the interface around the abilities of the hu-

man user instead of the model abilities. This approach is also one of the core principles of visual

analytics (Keim et al., 2008). Collaborative interfaces that follow these principles could empower hu-

mans to gain the efficiency benefits of deep learning-based models while retaining control and agency

over the automated process.

This dissertation argues that to enable collaborationwithmachine learningmodels, weneed to con-

sider the interaction design as an integral part of the machine learning model development. Although

collaboration and teamwork are central behavioral characteristics of humans, current deep learning-

based interfaces are missing these capabilities. To create intelligent autonomous partners, we advocate

for the application of the design principles of mixed-initiative interfaces, which call for “mechanisms

for efficient agent-user collaboration to refine results” (Horvitz, 1999). Crouser and Chang (2012)

argue for a human-computer collaboration framework for joint problem-solving in which interfaces

provide opportunities for actions of both human and machine agents, and that both must be able to

perceive and access these actions. They define these actions, also called affordances (Gibson, 1977),

as “action possibilities that are readily perceivable by a human operator”. Within the context of deep

learning for language generation, the affordances are defined as possible interactions that humans can

have with models. The collaboration-capabilities of a machine learning model are limited to actions

that the model developer designs. This dissertation argues that we need to develop new ways to inter-

act with models, because at present, models are neither controllable nor interpretable.

These newly designed actions could enable users to iteratively refine a proposed solution through

discourse and interaction with an autonomous agent, which may lead to better results than either

could achieve alone. Applying this design approach to the example from above, Anna could treat the

model-generated abstract as a suggestion instead of a starting point for post-editing. She can control
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the focus of the model toward essential aspects of the text and away from less salient content. The

improved interaction looks more like a dialogue, going back and forth between suggestions by Anna

and the model. The thesis of this dissertation is thus:

Human-machine collaboration is necessary to effectively generate natural language.

Intelligent interfaces for NLGmust thus be designed to enable collaboration between

humans and autonomous agents. To enable collaboration, the machine learning mod-

els that power these interfaces must be inherently interpretable and controllable.
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1.1 Thesis Overview

This dissertation demonstrates that collaborative interfaces for NLG are necessary, possible, and ef-

fective. It first discusses what it means for an NLG model to be interpretable and how to achieve

interpretability. It next introduces a mechanism that allows models to be controllable. Finally, it

shows how controllable and interpretable models can be used in collaborative interfaces.

We formally introduce natural language generation problems in Chapter 2 and describe conven-

tional approaches to these problems with a focus on deep learning.

Interaction Empowers Humans to Understand Models In Chapters 3-6, we argue for

interaction as a mechanism to make machine learning models more interpretable. Interpretability is

an active area of research in machine learning. An interpretable model is defined as one that a person

can understand such that they can explain predictions (Lipton, 2018). Developing an understanding

of a machine learning model’s behavior can be especially challenging in natural language processing

(NLP) because NLP models make many sequential decisions. A goal of interpretability methods is for

explanations tobepresented in away thatmesheswith thementalmodel of aperson. Anexplanation is

intuitive to the extent that it is similar to explanation apersonwouldhave given (Johnson-Laird, 1983).

If the model explains its prediction in a way people do not understand, the benefit of the explanation

diminishes (Narayanan et al., 2018). While this vision might seem to require explicit modeling of

human reasoning processes, we accomplish the main goal through a simpler challenge. We argue that

being able to interact with a model allows users to gain an understanding and develop a mental model

of the machine learning model behavior instead. This understanding helps users comprehend how a

model operates, explain its predictions, and recognize its limitations.

As a first step toward the goal of developing this mental model of model behavior, we need to un-

derstand the users of interpretability tools and their needs better. Therefore, in Chapter 3, we analyze
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typical user types andpresent a distinctionbetweenmodel architects, trainers, and endusers, whohave

varying knowledge about the machine learning methods and the problem domain. We further distin-

guish interpretability tools based on their goals. While a common goal is to understand better what

a model has learned in general (model understanding), other methods target the model predictions

instead (decision understanding). While these goals are not mutually exclusive, the tasks associated

with each category widely differ. It is thus beneficial to focus on one of the two in a single tool. Fi-

nally, we categorize interpretability tools based on how tightly coupled the model and the interface

are. For example, a model architect who aims to monitor the training process of a model does not

require a tightly coupled interface. However, a model trainer who wants to understand why a model

made a particular mistake requires a tighter coupled interface that enables counterfactual analyses by

constraining the model predictions and changing the inputs.

We demonstrate in Chapters 4-6 that a tighter coupling leads to more powerful interactions in the

interface. In three case studies of NLP, we demonstrate the need for interactive, end user-facing, in-

terfaces that help people understand and debug the reasoning process of neural networks. In the first

study, in Chapter 4, clinicians are presented with non-interactive explanations from a classification

model. We show that these explanations can effectively mesh with their mental model. In the sec-

ond case, in Chapter 5, we present LSTMVis, an interactive tool to identify patterns that recurrent

neural networks learn. Since neural networks use high-dimensional vectors to represent their internal

state, they are not inherently understandable. We show that by relating these states to textual exam-

ples that lead to a similar state, we can test whether these models learn linguistic patterns. We show

how the LSTMVis interface can help users develop an intuition for what a model has learned and test

hypotheses about a model’s behavior. In the third study in Chapter 6, we present Seq2Seq-Vis, an

interactive debugger for neural sequence models that utilizes the understanding of model trainers to

pinpoint sources of errors within a model. It is the first example that shows how inherently under-

standable parts of a model; in this case, the attention, can be used within an interface to enable effective
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collaboration.

These three cases show that interaction can be used to understand a model and that an understand-

able model-internal reasoning process widens the possible design space for interfaces. They demon-

strate that interpretability is an attainable goal for the safe and ethical application of all deep learning

systems. We further observe that the described cases are restricted to the interactions that the model

design allows. For example, the predictions of an end-to-end model that computes a single distribu-

tion from an input can only be understood in terms of this distribution. Since all other parts of most

current deep learning models are expressed in terms of high-dimensional vectors, they do not relate to

anything understandable by humans who thus cannot interact with them. Therefore, the more static

and non-interpretable the model design is, the more challenging it is to enable interactions with it. In

contrast, if the same model had to compute predictions of some other structured and understandable

information as part of the prediction process, people could not only understand this information, but

also interactwith it, for example by setting or constraining its value. We thus need to change themodel

designs and develop inherently interactive and understandable models.

Chapter 7: Discrete Latent Variables can Make Models Controllable A significant

disadvantage of most current NLG approaches is that they are not controllable. That means that a

user of anNLG toolwhomaywant to change the length, sentiment, topic, or content of the generated

text has to either reject a bad output entirely or heavily post-edit it. We argue that models can be made

inherently controllable through latent variables that represent discrete decisions that the model has to

make. These latent variables are tied to desired interactions that end users may want to have with the

model-internal reasoning process. By exposing these discrete decisions within a user-interface, we can

directly control the model inference.

Take, for example, a classification model that decides whether the language in a document is abu-

sive. The desired interaction may be to select the words that most support the final decision. By
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designing a binary latent variable for each word in the document, we are able to force the model to

take this decision. Moreover, by exposing this decision within an interface, a human end user could

interact with the model decision and investigate what would have happened if the model had taken

a different decision.

This approach changes the order in which model and interaction design have historically been ad-

dressed. Much of the work in interaction design focuses on already established models, whereas the

latent variable approach requires a model architect to think about interactions before developing the

model.

We investigate the effectiveness of this approach on the problem of abstractive summarization. We

extend a standard deep learning model for this problem with a mechanism that models the content se-

lection, i.e., whatwords in a source document are themost relevant for its summaries. Wedemonstrate

that modeling this decision leads to empirical improvements in the generated summaries. Moreover,

we show that the content selector is much more data-efficient than a text-generating summarization

model. As a result, the content selector can be trained on out-of-domain data to assist in domain

transfer tasks.

Chapter 8: Collaborative Semantic Inference We next describe a framework for the de-

signing of models as an intelligent partners for the human. We define the concept of collaborative

semantic inference (CSI) and its place in the design space of integrating deep neural models with inter-

active interfaces. CSI applications deploy a dialogue process, alternating between model predictions

presented in a visual form and user feedback on internal model reasoning. This process requires ex-

posing the model’s internal process in a way that meshes with the user’s mental model of the problem

and then empowering the user to influence this process.

We apply the design process to the use case of the document summarization system presented in

Chapter 7 and model the content selection of the summarizer as a latent variable. We describe how
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CSI can be incorporated into the model by developing a visually interactive interface that builds on

the interpretability lessons identified in Chapters 3-6. By exposing the content selection decision as

a controllable action, we enable a dialogue in which an end user decides which content is important,

and the model generates a corresponding sentence for the summary.

In CSI, we can additionally perform inference over the latent variable decisions conditioned on the

generated output. In the summarization interface, thismeans that the enduser canwrite their planned

summary and can see how well it covers the source document based on the latent variable decisions of

the model.

1.2 Contributions

The main contributions of this dissertation are as follows:

• We develop a conceptual framework to characterize research in interpretability. We develop

a categorization based on the capabilities and expertise that the users of a tool exhibit. We

further classify interpretability tools based on the extent of possible model interactions and

the tightness of coupling between model and interface. (Chapters 3,8)

• We demonstrate with three case studies that enabling user-interactions through tight inte-

gration of the model can empower users to develop their mental models of model behavior.

(Chapter 4-6)

• We show how to generate explanations of predictions for a model that identifies patients who

have specificmedical conditions from textual descriptions. Clinicians rated the quality of these

explanations similarly or better than comparable explanations generated for non-neural ap-

proaches. (Chapter 4)

• We introduce LSTMVis, an interactive tool to develop and investigate hypotheses about what
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neural sequence models of text have learned about language. Throughout multiple use cases,

we show that the hidden states within the sequence models can represent nesting depths, noun

phrases, and the most common chord progressions. (Chapter 5)

• We develop Seq2Seq-Vis, a debugger for neural sequence-to-sequence models that assists in

identifying what part of a model inference process has lead to a specific error. For the use case

of English-German translation, we identify common sources of errors and discuss approaches

to correct them. (Chapter 6)

• We demonstrate the improved performance of a document summarization system that reasons

about which content is relevant for a summary. This model uses discrete latent variables as a

means to make natural language generation controllable. (Chapter 7)

• We develop the concept of collaborative semantic inference as a framework to develop collab-

orative intelligent interfaces. We show how the framework can be applied to develop a collab-

orative summarization interface. (Chapter 8)
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The Analytical Engine has no pretensions to originate any-

thing. It can do whatever we know how to order it to perform.

Ada Lovelace

2
Natural Language Generation

Natural language generation (NLG) is the process of generating fluent, coherent, and accu-

rate language that describes data. These data can come in many different forms, ranging from tabular

data to long documents and images. In order to produce this language, a natural language generation

algorithm needs to identify what to say and then decide how to say it. In addition to the input, the

generation process depends on the task and the intended audience, a process that answers why a sys-
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tem should phrase something in a certain way (Hovy, 1987). For example, a system that is deployed

in a hospital and aims to summarize information from the medical record should use technical de-

tails when the audience are doctors and nurses, but use simple and understandable language when

communicating with patients (Mahamood and Reiter, 2011).

The traditional approach to deal with this challenging process is to structure and break up an NLG

problem into a series of smaller subproblems. A common structure is composed of the following three

steps as defined by Reiter (1994)1:

1. Content Determination and Text Planning Decide what information should be commu-

nicated and how to structure it rhetorically.

2. Sentence PlanningDecide how to break the information into individual sentences.

3. RealizationActualize the abstract representation in natural language.

The rise of deep learning approaches to NLG problems lead to the ubiquitous use of so-called end-

to-end methods where the entire task is learned with a complex neural network (Dušek et al., 2020).

With some exceptions (e.g., Elder et al., 2019, Fan et al., 2019), these approaches do not (intentionally)

follow the same structure, disconnecting them from the human-like traditional approaches. As noted

in the previous chapter, this disconnect leads to many challenges, which we aim to address in this

dissertation.

Before addressing these challenges, we provide an introduction to common problem formulations

inNLGand anoverviewof deep learningmethods to approach them in this section. In Section2.1, we

introduce the notation we follow throughout this dissertation. In Section 2.2, we formalize the most

common language generation tasks. In Section 2.3, we review deep learning approaches for NLG.

Finally, in Section 2.4, we briefly discuss inference methods that are used for these models.
1In later work, Reiter and Dale (1997, 2000) break the three steps down into more fine-grained subcate-

gories. For a more up-to-date overview of these categories, we refer to the description by Gatt and Krahmer
(2018).
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2.1 Notation

In the supervised text-to-text problem, let (x(0), y(0)), . . . (x(N), y(N)) ∈ (X ,Y) be a set of N

aligned source and target sequencepairs, with (x(i), y(i))denoting the ith element in (X ,Y). Through-

out this work, we use indices to indicate positional information within a sequence. For a problem that

uses text as input to produce text as output, let x = x1, . . . , xS be the sequence of S tokens in the

source, and y = y1, . . . , yT the target sequence of length T . Whenever a feature is represented as a

vector, we use bold face, for example when we have a sequence of vectorized features in an input x,

we refer to the feature representation of its tokens as x1, . . . , xS . We use lower case letters to refer to

vectors and upper case letters to refer to matrices, for example bias vectors b and weight matrices W.

We will further denote the list of integers between i and j as i:j. As a shorthand, we use <j to refer to

the list of integers from 1 to j-1.

2.2 Natural Language Generation Tasks

Probabilistic models for conditional generation tasks aim to learn a distribution parametrized by θ

to maximize the conditional probability of pθ(y|x). We typically assume that the target is generated

from left to right with an autoregressive model, such that

pθ(y|x) =
T∏

t=1

pθ(yt|y<t, x) =
T∑

t=1

log pθ(yt|y<t, x),

.

A single prediction step involves the computation ofpθ(yt|y<t, x), which can take the formof various

models that we introduce in Section 2.3.

Assuming that we have access to annotated training data, the training process aims to minimize the

negative log-likelihood of the observed training data,
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−
N∑

i=1

|y(i)|∑

t=1

log pθ(y
(i)
t |y(i)<t, x

(i)).

With a fully differentiable model architecture, this likelihood can be optimized using derivative-based

methods such as stochastic gradient descent and its variants. Since optimization is not focus of this

dissertation, we refer to Ruder (2016) for an overview of these approaches.

2.2.1 Language Modeling

The color of the dog is [brown/round/was/...]

Figure 2.1: In language modeling, the task is to predict the next word under a given context from a vocabulary of all the
words in the language. In this example, a plausible next word is brown.

Language modeling is the problem of predicting the word that follows a context of preceding

words, as shown in Figure 2.1. Language modeling does not technically qualify as an NLG problem,

since language models (LM) do not produce text from data, but only from samples. It does, however,

embody the core challenge of language generation of generating words.

In language modeling, at a time step t+1, the prefix of words x1, . . . , xt is taken as input and the

goal is to model the distribution over the next word p(xt+1|x1, . . . , xt). The specific task was devel-

oped by Shannon (1948) who used this task to estimate a bound on the entropy of English. Histori-

cally, LMs were of crucial importance for many tasks in NLP, for example by assigning likelihoods of

word-sequences in machine translation (Brown et al., 1988) and speech recognition (Jelinek, 1997).

2.2.2 Translation

With a history almost as longstanding as language modeling (Dostert, 1955), machine translation is

the task of automatically translating from one natural language to another. In machine translation, x
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German: Die Farbe des Hundes ist braun.
English: The color of the dog is [brown/round/was/...]

Figure 2.2: In machine transla on, the task is to predict the next word under a given context from a vocabulary of all the
words in the language. This decision is further condi oned on the same sentence expressed in another language.

denotes a sequence of tokens in one language and y a sequence of tokens in another language. Since

not all languages share the same syntax, a model has to successfully learn an alignment between the

two languages. While traditionally, statistical approaches learned separate language and alignment

models, deep-learning approaches combine these steps into a single end-to-end model. The align-

ment represents the input that is most relevant for the current translation step and can be formalized

as a distribution over the input tokens. We denote this distribution which is commonly called the at-

tention as pattn(at|x, y<t) for a decoding step t. The prediction which word should follow uses this

model-intrinsic attention distribution to compute the distribution over the next word p(yt|y<t, x).

In the example presented in Figure 2.2, an alignment model could predict that the next word should

translate the German word braun by assigning a high attention weight. Through this information,

the model determines that the next word should be its English translation, brown.

2.2.3 Summarization

In summarization, we consider a set of documents where x corresponds to tokens x1, . . . , xS in a

source document y to a summary y1, . . . , yT with T ≪ S. In contrast to translation, both source

and summary share the same language. The goal of a summary is to convey the same information

as the long source document. These summaries aim to describe the so-called macrostructure, or the

coherence, of the discourse in the source document (Van Dijk, 1977, Seidlhofer, 1995).

Summarization is typically divided into extractive and abstractive approaches. In extractive sum-

marization, the model is constrained to only use sentences or phrases from the input document. In

abstractive summarization, a model is allowed to paraphrase and reformulate the words from the in-
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Long Input: There exist a brown canine which has been ob-
served to have a brown color. It runs around the
yard, in search for its lost ball.

Sentence Extractive: There exist a brown canine which has been ob-
served to have a brown color.

Phrase Extractive: A brown canine which has a brown color runs
around the yard.

Abstractive: A brown dog searches for its ball.

Figure 2.3: Summariza on describes the task of compressing the informa on in a long document in short and fluent lan-
guage. Extrac ve summaries are composed of a subset of the sentences or phrases from the input, whereas abstrac ve
summaries can use paraphrase and reformulate the input.

put. Similar to machine translation, abstractive summaries are generated one word at a time. At every

time-step, amodel is aware of the previously generatedwords and canutilize an alignment to the input.

While the extractive summarization task is much easier, abstractive summaries can be much more

concise. In the example presented in Figure 2.3, the abstractive summary can paraphrase canine as dog

and compress the relative clause into a single adjective brown. For that reason, most neural approaches

try to combine the advantages of both approaches by incorporating mechanisms for abstractive and

extractive summarization behavior. In end-to-end models, the most common approach is to use a

so-called copy attention. The copy attention follows the same structure as the standard attention by

computing an alignment between the words in the source document and the current decoding step.

The attention weights, in conjunction with a predicted probability to copy a word, are used to deter-

mine whether and which input word should be copied into the summary draft.

2.2.4 Data-to-text

Input: color(brown), animal(dog).
Output: The color of the dog is brown.

Figure 2.4: Data-to-text problems are those without textual input. In this example, the input are key-value a ribute
pairs. The goal of this task is to describe these a ributes.

The problems we introduced up to this point are text transduction tasks where one sequence of
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words is used as input to generate another. Data-to-text problems are those where the input is not

fluent text (Gatt and Krahmer, 2018). Within the class of data-to-text problems, we focus on the

problem of generating text from structured key-value attribute pairs as shown in Figure 2.4. This task

is related to the traditional NLG pipeline, as the output of the intermediate planning steps are often

abstract meaning representations (MR) that take this form.

The problem treated as the same transduction task introduced above by mapping the structured

data into a sequential form. In order to apply the same end-to-end models used for summarization,

a list of attributes in an MR has to be linearized into a sequence of tokens (Konstas et al., 2017, Fer-

reira et al., 2017). For example, an approach could map an attribute color(brown) into the sequence

__start_color__ brown __end_color__ (Gehrmann et al., 2018a).

2.2.5 Other NLG tasks

There exists a myriad of other NLG tasks that are not included in the work discussed in this disser-

tation, each of which has their own challenges and uses. However, deep learning is currently the

standard approach to all of these problems, at least in research. They thus suffer from many of the

same issues we discuss throughout this dissertation.

A notable task is that of dialogue generation, or conversational AI. Dialogue was the original task

posed by Turing (1950) to assess whether an artificial agents behavior is indistinguishable from that

of a human. The problems we introduced so far all map from one input to one output. Models for

conversational AI need to solve the same type of text-transduction problem, but they also need to be

aware of everything that has been said before and of the overall dialogue structure, and they need to

be able to respond to arbitrary prompts. The task is thus much more challenging than summarization

or translation.

There also exist NLG tasks for input of completely different modalities, for example image or video

captioning. Models that address these tasks need a structure that is able to encode these inputs, but

19



otherwise looks strikingly similar to the end-to-end models we discuss. In addition, there also exist

tasks with multiple input modalities at the same time, for example visual question answering, where

a model should answer a question about an image.

Despite their differences, the deep learning approaches that are utilized to these problems share

many similarities and are composed of the same building blocks. We describe these building blocks in

the following section.

2.3 Deep Learning for Natural Language Processing

Most recent advances in natural language generation apply deep learning, a family of approaches that

is composed of neural network-based methods. In this section, we review the deep learning methods

that are applied to language generation problem and which we will use throughout the rest of this

dissertation.

2.3.1 Word Embeddings

Features in NLP systems have traditionally been task-specific and hand-designed and were represented

as one-hot vectors {0, 1}D, where D is the number of features. Let δ(xt) ∈ RD×1 be the represen-

tation of the t-th token within a sentence x. Consider a vocabulary with the six words

{a, cat, dog, jumps, runs, the}

and the phrase the dog jumps. The sentence could then be represented as a sequence of vectors:
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However, if you consider the semantically and syntactically very similar phrasea cat runs, younotice

that the two phrases have completely disjoint representations2.

The intuition behind word embeddings is that representing words or features as a dense real-valued

feature vector can capture these similarities, especiallywhen the embedding can be trained jointlywith

the rest of a model (Bengio et al., 2003, Collobert and Weston, 2008, Collobert et al., 2011). Words

that occur in similar contexts learn similar embeddings. Since misspellings, synonyms and abbrevia-

tions of a word occur in similar contexts, a database of synonyms and common misspellings is not re-

quired (Carrell et al., 2014). To map from δ(xt), consider an embeddingmatrixWemb ∈ RDemb×D.

By multiplyingWemb× δ(xt), we are picking the xt-th column ofWemb, as illustrated in the follow-

ing example:

⎡

⎢⎣w1 w2 w3

⎤

⎥⎦

⎡

⎢⎣
0

0

1

⎤

⎥⎦ =

⎡

⎢⎣w3

⎤

⎥⎦

Another advantage of distributed representations of words is that they can be used to leverage large

corpora of unlabeled text. Since language modeling does not require any annotated data, models and

their embeddings can be trained on much larger corpora than other tasks. Given the intuition that

an embedding reflects the meaning of a word, Collobert and Weston (2008) found that transferring

Wemb from a language model to other tasks significantly improved the performance on those tasks.

2The example is inspired by Bengio et al. (2003), who pioneered the use of word embeddings in language
models.
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In later work, Mikolov et al. (2013) and Pennington et al. (2014) introduced word2vec and GloVe re-

spectively, which are both methods to learn meaningful word embeddings. The resulting embeddings

have shown to improve performance across many NLP tasks, especially for tasks with limited training

data (Erhan et al., 2010, Luan et al., 2015, Wu et al., 2015).

Further expanding the idea of unsupervised representation learning, McCann et al. (2017) intro-

duced the idea of contextualized word embeddings. The idea of these embeddings is that the character-

istics of a word can vary depending on its linguistic context3. A contextualized word embeddings is a

function of a wide context to account for the variation, while still benefiting from unsupervised train-

ing. While CoVe by McCann et al. (2017) used the representations learned by a machine translation

system, Peters et al. (2018) introduce ELMo, which derives the representation from a bidirectional

language model. More recently, Devlin et al. (2019) introduced BERT, which explicitly learns entail-

ment in addition to language modeling.

2.3.2 Multi-Layer Perceptrons

Recall a logistic regression which is a linear classification model. Suppose we have a D-dimensional

inputx andC potential classes iny4. A logistic regressiondefines a scoring functionLR(x) = Wx =
∑D

i=1Wixi, whereW ∈ RC×D is a learnable parameter. LR(x) yields C scores, one for each class.

We can then apply the softmax function to transform the scores, also called logits, into normalized

probabilities

p(y=i|x) = exp(LR(x)i)∑C
c=1 exp(LR(x)c)

.

3Consider the sentencesThe children play in the leaves andTheir father leaves for work. Since theword leaves
is a homonym, it can be either a verb or a noun and completely switch meaning depending on the context. A
non-contextualized word embedding would assign the same embedding to both.

4It is typical that y is represented as one-hot vector {0, 1}C with a 1 as indicator for the correct class.
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Figure 2.5: An illustra on of a Perceptron model. A linear transforma on is applied to the representa on h0 to generate
the new state h1. This is followed by a so max-func on to generate a distribu on over possible outputs p(y|x).

The Perceptron (Rosenblatt, 1957, Minsky and Papert, 1969) additionally introduces a bias term

b ∈ RC that is added toWx5.

TheMulti-LayerPerceptron (MLP), also called the vanilla neural network, introducesnon-linearity

in the form of hidden layers. MLPs are chains of non-linear transformations that aim to learn highly

complex functions. Consider the following one-layer MLP:

MLP1(x) = W2 g(W1x+ b1)︸ ︷︷ ︸
One “layer”

+b2.

Here, W1 ∈ RDhid×D, b1 ∈ RDhid , W2 ∈ RC×Dhid , and b2 ∈ RC . The one-layer MLP

comprises two linear Perceptron-like transformations, intersected by a non-linear function g. The

activation function g can take different forms such as the sigmoid-function, tanh, or ReLU (Nair

and Hinton, 2010). Its result is also called the hidden state h.

By recursively defining a layer asmapping fromone vectorhi to its successorhi+1 such thathi+1 =

g(Wi+1hi+bi+1), weobserve thatwe can combine an arbitrarynumber of transformations, or layers,

within the neural network. In this definition, h1 represents the input to the network, for example a

5As Goldberg (2016) points out, a bias term can be simulated in a logistic regression via an additional di-
mension in xwhose value is always 1.
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word embedding.

2.3.3 Convolutional Neural Networks

So far, we have introduced dense representations of words and a way to derive features from them via

linear layers in a neural network. Convolutional Neural Networks (CNNs) represent a way to derive

features from sequences of dense representations (LeCun et al., 1998). This approach is particularly

helpful for classification tasks, as identifiedbyCollobert et al. (2011) andKim (2014). The idea behind

convolutions stems from computer vision, where the goal is to learn “filters” that transform adjacent

pixels into single values. Equivalently, a CNN for NLP learns which combinations of adjacent words

or features are associated with a given concept.

To represent a sequence of features, consider a sequence of T features, hi1, . . . , h
i
T , where hit ∈

RDi . A convolutional operation applies Di+1 filters of trained parameters W ∈ RDi+1×KDi to an

input-window of concatenated feature representations with a width of K . Therefore, a sequence of

word embeddings can be transformed as

hi+1
j = g(W

[
hit, . . . , h

i
t+K−1

]
︸ ︷︷ ︸

the current window of inputs

+b),

where b represents another bias term and g a non-linearity and which is applied for t=1, . . . T -K+1.

Since this operation yields T -K+1 representations in RDi+1 , we may want to combine them into a

single feature ĥ. This is typically done via pooling operations, which can average these representations

or pick the max/min values in each dimensions. In this context, max-pooling, the most commonly

applied operation in NLP, is defined as

ĥ
i+1
d = max

{
hi+1
1,d , . . . , h

i+1
T -K+1,d

}

︸ ︷︷ ︸
the derived feature maps
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Figure 2.6: We illustrate a simple CNN model with two filters of size 2 and 3. These filters are applied to a sequence of
input representa ons h0 to generate the features h1. Through a pooling opera on, each dimension in h1 is reduced to a
single value, also denoted as ĥ

1
.

for d=1, . . . Di+1. Given these functions, we can construct a simple CNN-based network to classify

text, as shown in Figure 2.6. In the example, each word is represented as its embedding δ(xt). The

sequence of embeddings are used as h1 to which the convolutional operations are applied. In the

example,we applymultiple convolutional operations of differentwidths (K = 2, . . . , 5) andDi+1=1

in parallel to capture information with different phrase-lengths. The result of the pooling operations

is used within a final linear layer to capture the classification probability.

2.3.4 Recurrent Neural Networks

While CNNs can effectively learn features from multiple consecutive inputs, they are fundamentally

limited by the width of the convolutional filters. Often, the information that are relevant for a predic-

tion are outside of the current window and thus cannot be taken into account by the model. Recur-

rent neural networks (RNN, Elman, 1990) are an approach to make neural networks stateful, and to

enable the representation of sequences of arbitrary length.
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RNNs are a class of neural networks that sequentially map representations such as word embed-

dings hi1 . . . h
i
T to a sequence of contextual hidden feature-state representations hi+1

1 . . .hi+1
T . This

is achieved by learning the weights of a neural network RNN, which is applied recursively at each

time-step t = 1, . . . , T :

hi+1
t = RNN(hit,h

i+1
t−1)

TheRNN function takes input vector hit and a hidden state vector hi+1
t−1 and gives a new hidden state

vector hi+1
t . Similar to the related neural architectures, each hidden state vector hi+1

t is in RDi+1 .

There exist many explicit formulation of the function. The simplest form, often called the vanilla

RNN, transforms the two inputs via linear transformations, followed by a non-linearity,

hi+1
t = tanh( W1hit︸ ︷︷ ︸

current input

+ W2hi+1
t−1︸ ︷︷ ︸

previous hidden state

+b),

with W1 ∈ RDi+1×Di , W2 ∈ RDi+1×Di+1 , and b ∈ RDi+1 . Long Short-Term Memory recurrent

neural networks (LSTM, Hochreiter and Schmidhuber, 1997), define a variant of RNN that has a

modified hidden state update which can more effectively learn long-term interactions. LSTMs main-

tain both a cell state vector and a hidden state vector at each time step. These vectors are modulated

by three gates, the input-, forget-, and output-gate, which are defined as follows6:

it = σ
(
Wi1hi−1

t +Wi2hit−1 + bi
)

ft = σ
(
Wf1hi−1

t +Wf2hit−1 + bf
)

ot = σ
(
Wo1hi−1

t +Wo2hit−1 + bo
)

6For brevity, we assume an input feature hi−1 instead of hi.
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All three gates are moderated by the sigmoid function to ensure that their values lie in [0, 1]. The

values are then used to construct the new cell state cit and the new hidden state hit,

c̃it = tanh
(
Wc1hi−1

t +Wc2hit−1 + bc
)

cit = ftcit−1 + itc̃it

hit = tanh
(
citot
)

Here, c̃it represents the actual update of the cell state cit, and the input-gate represents how much of

it gets written to the cell. Similarly, the forget-gate decided how much of the previous steps cell-state

is “remembered”. The output-gate decides how the cell-state should be used in the new hidden state.

RNNs are one of the most common approach to sequence-modeling problems, such as language

modeling (Mikolov et al., 2010, Zaremba et al., 2014). To utilize an RNN to produce a probability

distribution in this multi-class classification setting withC classes7, we need to transform the hidden

feature-state vector hit, which lies inRDi . Formally we define this as

p(xt+1|x1, . . . , xt︸ ︷︷ ︸
the context

) = softmax(Wht + b),

where W ∈ RDi×C , b ∈ RC are further parameters. The full computation of an RNN language

model is illustrated in Figure 2.7. A common extension to the RNN formulation is to represent a

left and a right context to two different RNNs respectively and to concatenate the resulting repre-

sentations. This approach is called the bidirectional RNN, or BiRNN for short. BiLSTM based

approaches have been the most prevalent approach to encode many of the inputs for the described

NLG tasks.
7In the language modeling example,C is equal to the vocabulary size, which is also often denoted as V .
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Figure 2.7: A recurrent neural network language model being used to compute p(xt+1|x1, . . . , xt). At each me
step, a word xt is converted to a word vector δ(xt), which is then used as ini al feature vector h1t to update the hid-
den state h2t = RNN(h1t , h

2
t−1). This hidden state vector can be used for predic on. In language modeling it is used to

define the probability of the next word, p(xt+1|x1, . . . , xt) = so max(Wh2t + b).

RNNs learn to utilize the hidden states to represent the features of the input, but due to the non-

linear transformations and high-dimensional representations, they are difficult to understand. The

dynamics of the hidden states in RNNs, particularly their change over time, are a central point of

investigation in Chapter 5.

2.3.5 Sequence-to-Sequence Models and Attention-Mechanisms

The methods we described so far are limited to learning to generate representations of sequential in-

puts. However, often we care about transducing text, where the sequential output is additionally

conditioned on input. Moreover, in those cases we care about modeling interactions between the in-

put and output representations. This problem is approached with sequence-to-Sequence (seq2seq)
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models (Bahdanau et al., 2015, Sutskever et al., 2014). Seq2seq models can be broken down into four

stages: an encoder and decoder, the attention, and a prediction.

Recall the machine translation example from Chapter 2.2.2, which aims to translate the German

sentence “Die Farbe des Hundes is braun” and the partial translation “The color of the dog is …”. The

encoder, typically some variant of theRNNorBiRNN, is used to encode the source into a sequence of

hidden representations x1, . . . , xS . The decoder, which typically also assumes the form of a RNN8,

is used to encode the current state of a translation y1, . . . , yt−1.

To arrive at the correct nextword, the network next computes an attention between the inputx and

the current decoding step yt, which is further conditioned on the previously translated words y<t. In

the example, the attention mechanism focuses on the German word “braun” so that the network can

predict its translation “brown”.

Attention The attention mechanism comprises a family of approaches that aim to align a rep-

resentation to a sequence and to represent a measure of focus within a neural network. Within the

network, the attention distribution p(at|x, y<t) for a decoding step t represents an embedded soft

distribution over all of the source tokens.

The attention first computes an alignment score for each source token according to a scoring func-

tion score(x,ht) that uses the current decoder hidden state ht as input. This score is then converted

into a distribution such that p(at|x, y<t) = softmax ([score(x,ht)1, . . . , score(x,ht)S ]). Given the

attention distribution, we compute a single vector that represents the entire context over which the

network is attending. The context vector is a sum of hidden states in the encoder xs, weighted by their

attention weight at,s,

8Since autoregressive decoding predicts words in a left-to-right manner, BiRNNs cannot be applied in a
decoder.
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ct =
S∑

s

at,sxs.

ForRNN-based sequence-to-sequencemodels, there exist twopopular variants of the scoring func-

tion. The first uses a dot-product between the hidden states of the encoder and decoder (Luong et al.,

2015). The second uses a multi-layer perceptron with the hidden states as inputs (Bahdanau et al.,

2015). For each encoder token, the scores are defined as

scoredot(x,ht)s = xs · ht

scoreMLP (x,ht)s = Wattn tanh (Wsxs +Whht + battn) ,

where allWs and bs are trainable parameters.

Prediction In seq2seq models, the context vector is next used to compute an output representa-

tion houtt . Let [ht, ct] denote the concatenation of the decoder hidden state and the context vector.

This can be used to calculate an intermediate representation houtt ∈ RDhid as

houtt = Wout[ht, ct] + bout.

Finally, a generator calculates the conditional probability distribution over the vocabulary V ,

p(yt|y<t, x) = softmax(Wgenhoutt + bgen).

In those computations, Wout ∈ RDhid×2·Dhid , bout ∈ RDhid , Wgen ∈ R|V|×Dhid , and bgen ∈ R|V| are

all trainable parameters.

30



Copy attention In some NLG problems, parts of the inputs should be replicated in the output.

For example, when the goal is to describe a restaurant based on key-value attributes, it is beneficial

to give the model the ability to copy for example the restaurant name which otherwise would not be

part of V . In these cases, the seq2seq model can be augmented with a copy mechanism (Vinyals et al.,

2015, Gu et al., 2016) to copy words from the source. Copy models extend the decoder by predicting

a binary soft switch zt that determines whether the model copies or generates. The copy distribution

is a probability distribution over the source text, and the joint distribution is computed as a convex

combination of the two parts of the model,

p(yt | y<t, x) =

p(zt = 1 | y<t, x)× p(yt | zt = 1, y<t, x)

+ p(zt = 0 | y<t, x)× p(yt | zt = 0, y<t, x)

where the two parts represent copy and generation distribution respectively.

The computation of p(zt|y<t, x) uses the same output representation that is used as input to the

generator,

p(zt|y<t, x) = σ
(
Wcopyhoutt + bcopy

)
,

with Wcopy ∈ R1×Dhid and bcopy ∈ R, and the σ-function ensuring values between 0 and 19. The

other addition in the copy mechanism is the copy distribution p(yt | zt = 1, y<t, x). The copy distri-

bution is a distribution over the input which can be computed with a separate module as first intro-

duced by Gu et al. (2016). However, most recent work reuses the attention distribution p(at|x, y<t)

which leads to the same or better results and avoids the additional computational overhead. To trans-

9Some papers, for example See et al. (2017), use a slightly different computation with additional inputs, but
our empirical results show no difference in performance.
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late the attention distribution to a distribution over a vocabulary, we add the incoming attention

weights for each source token. That means, if an input has two tokens “dog” with attention weights

0.1 and 0.3 respectively, p(yt = dog | zt = 1, y<t, x) = 0.4. Since an input token could be not

part of V , or out-of-vocabulary, this operation can lead to a high probability for previously unknown

tokens with probability 0.

2.3.6 Transformer

To further build on the strong performance of attention-based models, Vaswani et al. (2017) devel-

oped the Transformer architecture which represents an alternative to recurrent neural networks. In-

stead of using recurrence tomodel the context of a token, theTransformer uses self-attention, an atten-

tion that is computed from a tokenwithin a sequence over the sequence itself. Recall the computation

of the context vector following the scoring function by Luong et al. (2015), Since, hs and xs would

be equal in the unmodified self-attention, the Transformer extends this formulation. Consider the

following interpretation: ht is a query that looks for the most similar values in they key X, where

X = [x1, . . . , xS ]. It then uses this similarity to weigh the underlying value, which in the default case

is alsoX,

ct = softmax

⎛

⎜⎝ X︸︷︷︸
Key

· ht︸︷︷︸
Query

⎞

⎟⎠ X︸︷︷︸
Value

.

The Transformer models a queryQ, a set of keysK, and valuesV individually through three differ-

ent linear transformations from the input to a Transformer layer. Q andK are of dimensionDK and

V of dimensionDV . To account for potentially large dot products, the result of the scoring function

is further normalized by the root ofDK ,
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ct = softmax
(
K ·Qt√
DK

)
V.

The Transformer computes h of these representation with different Attention-Heads which are

concatenated and followed by another linear layer. It is of note that due to the loss of recurrence,

this formulation can no longer account for positional information and all words would be treated

equidistant. To address this problem, the Transformer introduces a positional encoding that is added

to each word embedding,

PE(pos,2i) = sin
(
pos/100002i/Demb

)

PE(pos,2i+1) = cos
(
pos/100002i/Demb

)
.

Here, pos represents the position of the word within a sequence, and i the dimension within the

word embedding vector. Each individual Transformer sublayer, for example the Multi-Head atten-

tion, additionally has a residual connection (He et al., 2016), which is a connection that skips the

transformation and is followed by a layer normalization (Ba et al., 2016). That means that the out-

put of a sublayer is equal to LayerNorm(x + Sublayer(x)). If the Transformer is used as a decoder,

the self-attention only attends to already generated tokens, and the sublayer is followed by another

multi-head attention that attends to the input.

The final sublayer of a Transformer layer is an MLP with a ReLU activation function(Hahnloser

et al., 2000), defined as

MLPTransformer(x) = W2max
(
0,W1x+ b1

)
+ b2.
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2.4 Approximate Search and Text Generation

The goal of supervised NLG tasks is to find the sequence from the set of all possible sequences that

maximizes the conditional likelihood of the sequence, given the input,

ŷ = arg max
y∈Y

p(y|x).

To compute the conditional likelihood, we can apply models that score a sequence, as described

in Section 2.2. The standard approach decomposes the probability into individual word-level esti-

mations p(yt|y<t, x). Neural network-based models using the deep learning building blocks from

Section 2.3 can be used to estimate these probabilities.

To use these predictions in a greedy search for ŷ, one could simply take the highest probability

word at each time step. However, it is possible that this choice will lead down a bad path (for instance,

first picking the word ”an” and then wanting a word starting with a consonant). We, therefore, need

to consider predictions that are not the highest-scoring one for each time step, but it is intractable to

performan exact search for ŷ. Assuming a left-to-right search,wewouldneed to expand |V| candidates

at each step of the incremental search. That means, if ŷ has lengthT , the search would have to expand

|V|T candidates.

A tractable alternative is to use an approximate, heuristic search strategy. The most commonly

applied strategy is beam search, which is an example of the forward pruning strategy which disregards

the majority of expanded candidates without further consideration (Russell and Norvig, 2016). Beam

search instead pursues several possible hypothesis translations each time step. It does so by building a

tree comprising the top K-hypothesis translations. At each point, all next words are generated for

each hypothesis. Of theseK ∗ |V|, only the most likelyK are retained and the rest is discarded. Once

all K beams have terminated by predicting a special stop token, the final prediction is the translation
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with the highest score.

Beam search is the standard approach to generating a sequence of words that is approximately the

one with the highest likelihood according to the model. However, this search approach assumes that

a single best ŷ exists. In many NLG cases there exist many different plausible surface realizations that

receive a lower likelihood by the model. Being able to actualize these diverse predictions is especially

crucial if a human has repeated interaction with model-generated text.

If a model can successfully approximate the “real” distribution of language in a given context, sam-

pling is a valid alternative for text generation. Instead of treating the model as a scoring function, we

can treat its prediction as a distribution. We sample from it by generating a wordw proportionally to

p(yt=w|y<t, x).

Often, the distributions resulting from the model have a high entropy, which means that a high

share of the probability mass can be spread over incorrect words. It can thus happen that sampling

leads to diverse but low-quality samples. To avoid this problem, the distribution can be modulated

with a temperature, which leads to a lower frequency of low-probability words. In temperature-based

sampling, we choose a word w proportionally to p1/T (yt=w|y<t, x) for a temperature T . As we

decreaseT , the entropydecreases andwordswith the highest probabilities aremore likely to be chosen.

An alternative approach, not further discussed here is to directly model diverse sequences as part

of a model (Gehrmann et al., 2018a).
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An expression cannot be guaranteed as fully intelligible unless

an explication or analysis of its meaning has been provided.

Paul Grice

3
Understanding Users and their

Interpretability Needs

Amodel is interpretablewhen it can explain its outputs such that users are able to understand its

predictions (Doshi-Velez and Kim, 2017, Lipton, 2018). There exist many methods that try to enable

the understanding of neural networks. These methods, which have also been called network analysis
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or probing methods, aim to derive insights from a fully trained model (Belinkov and Glass, 2019).

Since neural architectures are composed of many non-linear building blocks that transform the input

data in various ways, their predictions are not inherently explainable. This limitation inhibits their

applicability to many use cases where their predictions can have critical consequences, for example

in health care. Although a smart assistant to a physician that helps interpret data could bring many

benefits, the physician has their own understanding of a problem and their own opinion about the

solution. A neural network could either reinforce or contradict this opinion, but since it is not giving

any reason for its prediction, the physician should not blindly trust it. If a network could explain

its prediction instead, the physician could treat it as an additional input to consider when making

their own verdict. Interpretability is thus a crucial goal for the safe and ethical application of all deep

learning systems.

As a first step toward interpretable models and predictions, we need to consider who an interactive

tool is addressing. Therefore, in Chapter 3.1, we introduce a categorization for user types based on

how much knowledge a user of a tool has of the underlying model and of the task that it addresses. For

example, a clinician has task-specific knowledge, but little model-specific knowledge and is thus classi-

fied as enduser. In contrast, someonewhodevelops newmachine learningmethods that aim to suggest

medical treatments may have limited task-specific knowledge, but is an expert in the model-specific

knowledge. We categorize this user as architect. The last user group is called the trainer which com-

prises those who use or train models, but don’t develop the methodologies. These users often stand

in between end users and architects and have some knowledge about both the task and the model.

Once the user type is known to the developer of an interpretability tool, they have to decide on

two additional factors that we describe in Chapter 3.2. The first factor differentiates between interac-

tions that aim to help understand a specific prediction from the model, and those that understand the

model in general. This decision strongly depends on the needs of the user – do they want to validate

that the model has learned expected inductive biases, or do they want an explanation for a prediction?
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Furthermore, interfaces for both types of methods can be arbitrarily tightly coupled with the underly-

ing model. Consider an interface that presents a time series of measures to monitor how well a model

is training (Wongsuphasawat et al., 2018). This interface does not need to be coupled with the model

at all. The only requirement is that the model provides the means to access those statistics. In contrast,

consider an interactive tool where model and user take turns developing a video game (Guzdial and

Riedl, 2019). The interface needs to enable a user to interact with the input and the output of the

model, which requires a tighter coupling.

We exemplify these user types and categories with three case studies and show how interaction can

lead to a better intuition and understanding about machine learning models. In NLG, developing an

understanding for the machine learning model behavior can be especially challenging, because mod-

els take many sequential decisions that all require an explanation. For that reason, we first discuss a

simpler case study in Chapter 4, specifically a binary classification task where the output is a zero or

a one. We investigate the problem of correctly identifying whether a patient is part of a particular

patient cohort based on the textual information from their electronic health records. Traditionally,

the most commonly used approach to this problem relies on extracting a number of clinician-defined

medical concepts from the text andusingmachine learning techniques to identifywhether a particular

patient has a certain condition. We compare the concept extraction-based approach to CNN-based

deep learning and show that the CNN can achieve better performance across ten different condi-

tions. Since both approaches rely on information in phrases, either hand-curated or learned, we in-

vestigate whether we can use the most predictive phrases in a document as an explanation. For the

CNN, we derive the phrase-importance by extending the formulation of the so called first-derivative

saliency, which has previously been used to investigate machine translation (Li et al., 2016a). Saliency

is a method that targets end users who may know nothing about the model, but have extensive do-

main knowledge. To evaluate this kind of explanation, we ask clinicians for their preference out of the

two explanation types. The results show a clear preference for the CNN-based explanations, but also
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point to inherent limitations in the “static” analysis that shows non-interactive explanations.

Humans highly rate static explanations when they can use the explanation to confirm their intu-

ition how a model works. However, when the explanation is not intuitive to the human, it can lead to

confusion and less trust. Explanations from interpretability methods thus need to be presented in a

way thatmesheswith thementalmodel of a person, i.e., similar to theway the personwould have given

a explanation of their decision (Johnson-Laird, 1983). It is, however, impossible to provide a single

explanation that satisfies every person who interacts with model predictions. Moreover, it requires

the explicit reflection of the human reasoning process within a model. We, therefore, pose an alter-

native challenge that can be addressed by combining methods from HCI and visualization with the

interpretability methods from machine learning and NLP. We argue that being able to interact with

a model allows users to gain an understanding and develop a mental model of the machine learning

model behavior. This understanding helps users comprehend how a model operates and to recognize

its limitations.

In Chapter 5, we further present a case study of a system that assists trainers and architects inves-

tigate the behavior of RNNs. Researchers interested in better understanding RNNs have studied

how their hidden state changes over time and noticed some interpretable patterns but also significant

noise. We develop LSTMVis, a visual analysis tool for recurrent neural networks with a focus on un-

derstanding these hidden state dynamics. With a focus on various language modeling tasks, the tool

allows users to test a hypothesis about what global patterns an RNN has learned to detect, for example

noun phrases. To test the hypothesis, the tool assists the user in selecting a sequence of model inputs

and a set of hidden states for these inputs. The tool matches these states changes to similar patterns

in a large data set, and aligns these results with structural annotations from the domain in which the

model is operating. We demonstrate several use cases of LSTMVis for analyzing specific hidden state

properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate

how the tool can be used to isolate patterns for further statistical analysis. Long-term usage data after
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putting the tool online revealed great interest in the machine learning community.

While LSTMVis shows how we can gain insight into patterns that a network learns, it does not

help users understand a specific prediction. Sequence-to-sequence models are becoming the standard

approach for many real-world NLG applications, most notably translation (Wu et al., 2016). How-

ever, these models frequently make mistakes. While these are often harmless, a wrong translation

made by the facebook translation system led to a wrongful arrest in the past (Hern, 2017). A first

step toward preventing these mistakes is understanding where in a model a specific error originated.

To answer this question, we developed a neural debugger, called Seq2Seq-Vis, which we present in

Chapter 6. Seq2Seq-Vis is a visual analysis tool that allows interaction with a trained sequence-to-

sequence model through each stage of the translation process. It shows that visualizing the inherently

understandable attention within the model can help humans relate some complex model decisions

to understandable abstractions. We demonstrate the utility of our tool through several real-world

large-scale sequence-to-sequence use cases.

LSTMVis and Seq2Seq-Vis demonstrate the need for interactive interfaces that are designed for

their respective user types that help people understand and debug the reasoning process of neural

networks. LSTMVis shows that relating complex model-internals to understandable examples with

similar hidden states can help humans develop an intuition how these states arise. Seq2Seq-Vis ex-

pands the idea of understandable model internals and demonstrates that inherently understandable

parts of a model can be used within an interface to enable an intuitive understanding. Together, the

case studies show how interaction with interpretable aspects of a model can be used to understand a

model, and that an understandable model-internal reasoning process widens the possible design space

for interfaces.

We further observe that the described cases are restricted to the interactions that the model design

allows. The more static and non-interpretable the model design is, the more challenging it is to enable

interactions with it. We thus conclude that the interpretability is limited by the non-interpretable and
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non-interactive model design and that we need inherently interactive and understandable models.
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Figure 3.1: Views on neural network models for different user roles. The architect analyzes and modifies all components
of the system. The trainer abstracts the model to the main components and parameters and focuses on training on
different data sets. The end user has the most abstract view on the model and considers whether the output is coherent
for a given input.

3.1 User Types: Architects, Trainers, and End Users

Presenting clinicians with a list of the most predictive phrases that a model uses to make a prediction

allows them to use their domain knowledge to validatewhether the explanationsmatch their intuition

about what a model has learned. However, a list of predictive phrases may fail to provide enough

information when the explanation does not match this intuition or when more relevant phrases exist

that model does not consider. One approach to expand on these explanations is to reveal more details

about the innerworkings of amodel. However, this approach requiresmore domain knowledge about

NLP and machine learning which clinicians typically do not have. The solution, therefore, has to

strike a balance between the informativeness and difficulty of the explanation.

Since deep neural networks are now widely employed both in the research and industrial setting,

methods for the analysis and interpretation are applied and seen by a diverse set of users with different

needs. It is crucial to identify the user and their needs before developing and applying interpretability

methods for a specific use case. We identified three prototypical user roles, their incentives, and their

view on neural networks, which we summarize in Figure 3.1: architects develop novel deep learning

structures, trainers develop new data sets to train existing models, and end users apply deep models to

42



new data.

Architects are looking to develop new deep learning methodologies or to modify existing deep

architectures for new domains. An architect is interested in training and comparing different network

structures and comparing how the models capture the features of their domain. We assume that the

architects are deeply knowledgeable about machine learning, neural networks, and the internal struc-

ture of the system. Their goal is comparing the performance of variant models and understanding the

learned properties of the system.

Trainers are those users interested in applying known architectures to tasks for which they are

domain experts. Trainers understand the key concept surrounding deep learning and utilize neural

networks as a tool. However, their main focus is on the application domain and utilizing effective

methods to solve known problems. Their goal is to use a known network architecture with only mi-

nor modifications. They aim to observe how the model performs in the chosen target domain and

communicate the results to the domain experts to derive insights from the data. Examples of trainers

include a bioinformatician or an applied machine learning engineer.

End Users are the most prevalent role of users. End users utilize networks that were trained by

someone else for various tasks. End users do not not need to understand the model at all, and are only

presented with their outputs. They have a deep domain knowledge and the predictions are aimed to

enrich a decision process in which they are involved. Examples for this kind of user are clinicians who

are presented with predicted risk scores or bankers who observe default risks on a loan.
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3.2 Design Space for Integrating Machine Learning into Interfaces

The different user types give insights into the level of model-internal information that an interface

can expose and the amount of domain-specific knowledge that the analysis methods can expect. They

do not, however, inform us about the tasks that should be completed within the interface and the

tightness of the coupling between the interface and the machine learning model. We thus synthesize

insights from analyses of the design space for visual interpretation of machine learning models and

introduce a classification scheme with a focus on the efforts from both machine learning and visu-

alization experts who co-design interpretability tools (Endert et al., 2017, Liu et al., 2017, Lu et al.,

2017, Hohman et al., 2018).

The different co-design approaches are contextualized through a categorization of the design space

based on two criteria: (1) the level of integration of a machine learning model and an interactive inter-

face, and (2) applications that aim to understand and shape the model or model-decisions. Table 3.1

shows a categorization of the related work using these criteria. Each of the resulting categories can

encompass tools that cater to multiple different user types.

We identify two broad integration approaches between models and visual interfaces (Figure 3.2):

passive observation and interactive observation, which we extend by a third category interactive collab-

oration in chapter 8. As we will discuss in detail in this section, these categories comprise a class of

techniques that address different challenges along an analysis pipeline.

In addition to the level of integration and user type, we divide the design space between visual in-

terfaces to understand themodel or the decisions of the model. Model-understanding describes systems

with the goal of understanding the model through its features and parameters. The methods can help

to gain insights into or modify the parameters that a model is in the process of learning or has learned

already. Decision-understanding systems have the goal of understanding the individual decisions of

the model on specific instances. Decision-based applications aim to understand how the model arrives
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Figure 3.2: An illustra on of the two coupling types between interfaces. Interac ve observa on tools require a ghter
coupling and thus enable more interac ons than passive observa on tools.

at a given output but does not modify the parameter of the model.

We provide a brief overview of the related work for each of the categories in Table 3.1.

3.2.1 Passive Observation

The first stage in our design space is passive observation, in which visualizations present a user with

static information about the model or its output. The information can target any user-type and range

from global information about model training to heatmaps overlaid over specific inputs. Passive ob-

servation interfaces only require a loose coupling between the interface and the model (Figure 3.2(a)).
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Model-Understanding Architects and trainers are often concerned about how well a model

is training, i.e., the model performance. Tools can assist trainers by tracking and comparing different

models and metrics, e.g., Tensorboard (Wongsuphasawat et al., 2018). Moreover, it is crucial for train-

ers to understand whether a model learns a good representation of the data as a secondary effect of the

training, and to detect potential biases or origins of errors in a model (Belinkov and Glass, 2019). To

address this issue, many model-understanding techniques aim to visualize or analyze learned global

features of a model (Carter et al., 2019, Odena et al., 2016, Belinkov et al., 2017a). Most recent work

in this direction focuses on visualizing hidden representations of CNNs (Lecun et al., 1998) for com-

puter vision applications. For example, techniques can directly show the images that maximize the

activity (Simonyan et al., 2013). For RNNs, Karpathy et al. (2015) use static visualizations to under-

stand hidden states in language models. They demonstrate that selected cells can model clear events

such as open parentheses and the start of URLs. In Zeiler and Fergus (2014) use deconvolutional

networks to explore the layers of a CNN. This approach is widely used to generate explanations of

models, for example, by Yosinski et al. (2015). In Chapter 4, we will explore a similar technique to

generate explanations for a CNN that aims to classify text.

Decision-Understanding Decision-understanding passive observation tools assist end users in

developing a mental model of the machine learning model behavior for particular examples. The

most commonly applied decision-understanding techniques present overlays over images (Dey et al.,

2015) or texts (Dalvi et al., 2019). There is a rich literature for methods that compute these relevant

inputs for specific predictions, for example by computing local decision boundaries or using gradient-

based saliency (Li et al., 2016a, Ribeiro et al., 2016, Ross et al., 2017, Zintgraf et al., 2017, Alvarez-

Melis and Jaakkola, 2017). Most of these methods focus on classification problems in which only

one output exists. Rücklé and Gurevych (2017) address this issue and extend saliency methods to

work with multiple outputs in a question-answering system. As an alternative to saliency-methods,
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Model-Understanding Decision-Understanding
Passive
Observation

Activation Atlas (Carter et al.,
2019),
Classification
Visualization (Chae et al.,
2017),
DeepEyes (Pezzotti et al., 2018),
Feature classifiers (Belinkov
et al., 2017a),
Tensorboard (Wongsuphasawat
et al., 2018),
Weight Visualization (Tzeng
and Ma, 2005),
CNN Saliency (Chapter 4,
Gehrmann et al., 2018b),

Deconvolution (Zeiler and Fer-
gus, 2014),
LIME (Ribeiro et al., 2016),
Neuron Analysis (Dalvi et al.,
2019),
Rationals (Lei et al., 2016),
RNN Saliency (Li et al., 2016a),
Structured Interpretation (Dey
et al., 2015),
Prediction Difference (Zintgraf
et al., 2017)

Interactive
Observation

ActiVis (Kahng et al., 2018),
Deep Visualization (Yosinski
et al., 2015),
Embedding Projector (Smilkov
et al., 2016),
GANViz (Wang et al., 2018a),
Prospector (Krause et al., 2016),
RetainVis (Kwon et al., 2019),
RNNVis (Ming et al., 2017),
ShapeShop (Hohman et al.,
2017),
LSTMVis (Chapter 5,
Strobelt et al., 2018b)

Instance-Level Explana-
tions (Krause et al., 2017),
Manifold (Zhang et al., 2019a),
NLIZE (Liu et al., 2019),
RNNBow (Cashman et al.,
2018),
Semantic Image Synthe-
sis (Chen and Koltun, 2017),
Seq2Seq-Vis (Chapter 6,
Strobelt et al., 2019)

Table 3.1: A classifica on of some of the related work, which shows the dis nct lack of collabora ve interfaces for
decision-understanding and shaping. Our CSI framework aims to fill this void, with a par cular focus on applica ons
built for end users. However, different user types span all of the previous work, some aiming towards architects, train-
ers, end users, or a combina on of them.

Ding et al. (2017) use a layer-wise relevance propagation technique (Bach et al., 2015) to understand

relevance of input with regard to an output in sequence-to-sentence models. Yet another approach
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to understand predictions within text-based models is to find the minimum input that still yields the

same prediction (Lei et al., 2016, Li et al., 2016b).

These overlays often represent the activation levels of a neural network for a specific input (Erhan

et al., 2009, Le et al., 2012). For example, in image captioning, this method can show a heatmap that

indicates which part of an image was relevant to generate a specific word (Xu et al., 2015). Note that

often, the same methods can be applied to the model as a whole and to specific instances, which means

that those methods could be used for both model and decision-understanding (for example, our case

study in Chapter 4).

A commonly noted challenge is the quantitative assessment of these methods. A commonly used

assessment of decision-understanding methods may focus on whether generated highlights match hu-

man intuition (Kindermans et al., 2019, Adebayo et al., 2018). However, the understanding of a

model and its predictions depend on the domain knowledge of the users and the set of investigated

examples. The perceived usefulness may thus highly vary between users of a tool. Other applications

of decision-understanding methods lie in a pedagogical context where they can be used to develop an

understanding of a type of model in general (Hohman et al., 2018, Smilkov et al., 2017a). Here, an

evaluation focuses on whether the method helps students understand the concepts behind a model.

3.2.2 Interactive Observation

Interactive observation interfaces can receive feedbackor information fromthemodel itself (Figure 3.2(b)).

This feedback enables the testing of multiple hypotheses about the model behavior within a single in-

terface. We classify tools as interactive observation that allow changing inputs or extracting anymodel-

internal representation as part of an interactive analysis. We call these forward interactions, analogous

to how sending inputs into a model is called the forward pass. This approach can be used by trainers

with domain knowledge to verify that a model has learned known structures in the data, or by end

users to gain novel insights into a problem. The development of interactive observation methods has
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been an active field of research, as summarized in recent review papers (Liu et al., 2017, Lu et al., 2017,

Hohman et al., 2018). Interactive observation allows for a richer space of potential interactions than

passive observation tools and thus require a closer coupling between visualizations, interface, and the

model (Endert et al., 2017).

Model-Understanding In an extension of visualization of learned features, interactive obser-

vational tools enable end users and trainers to test hypotheses about global patterns that a model may

have learned. One example is Prospector (Krause et al., 2016), which can be used to investigate the

importance of features and learned patterns. Alternatively, counterfactual explanations can be used

to investigate changes in the outcome of a model for different inputs, thereby increasing trust and

interpretability (Wexler et al., 2019, Wachter et al., 2017).

In Chapter 5, we present LSTMVis, an approach to making sense of the complex interactions

within a model by relating them to similar training examples. This work is in line with other tools

that aim to interactively investigate the hidden representations of RNNs to understand what they

have learned Kahng et al. (2018), Ming et al. (2017). Alternative approaches use clustering and di-

mensionality reduction to visualize the progression of hidden states (Johnson et al., 2017).

Decision-Understanding Interactivedecision-understanding tools visualize howsmall changes

to an input or the internal representation influence the model prediction. Interactive experimenta-

tion can lead to an understanding of a particular prediction by using the local information around

only one input (Park et al., 2018). Interactively building this intuition is crucial to end users since past

research has shown that statically presenting only a few instances may lead to misrepresentation of the

model limitations (Kim et al., 2016a) or the data that the model uses (Vellido et al., 2012). In that line,

Olah et al. (2018) build an interactive system that shows that not only the learned filters of a CNN

matter, but also their magnitudes.
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Moreover, interactive decision-understanding answer counter-factual “what if” questions to un-

derstand the robustness of a model to pertubations. Nguyen et al. (2015) show that small perturba-

tions to inputs of an image classifier can drastically change the output. Interactive visualization tools

such as Picasso (Henderson and Rothe, 2017) can manipulate and occlude parts of an image as input

to an image classifier. Krause et al. (2016) use partial dependence diagnostics to explain how features

affect the global predictions, while users can interactively tweak feature values and see how the predic-

tion responds to instances of interest.

Another desired outcome of interactive observational tools is the testing of hypotheses about local

patterns that amodelmay have learned. An an example, we present Seq2seq-Vis inChapter 6, which

allows users to change inputs and constrain the inference of a translation model in order to pinpoint

what part of the model is responsible for an error. Similar debugging-focused approaches (Zhang

et al., 2019a, Krause et al., 2017) only visualize the necessary parts of a model to find and explain

errors, instead of giving in-depth insights into hidden model states.
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If a lion could talk, we could not understand him.

Ludwig Wittgenstein

4
Evaluating Explanations in Automated

Patient Phenotyping

An area in which it is crucial to deploy understandable and well-functioning predictive models is

healthcare. Predictive models are very commonly used in the analysis of elecronic health records

(EHR). EHRs are the place where caretakers in clinical settings record relevant patient information.

Throughout a hospital stay, a patient is continuously monitored and all updates are noted within
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their medical record. EHR data comprise both structured data such as International Classification

of Diseases (ICD) codes, laboratory results and medications, and unstructured data such as clinician

progress notes. While structured data do not require complex processing prior to statistical tests and

machine learning tasks, the majority of data exist in unstructured form (Murdoch and Detsky, 2013),

since nurses, social workers, and doctors detail most information textual notes. NLP methods can

analyze this valuable data, which in conjunction with analyzing structured data can lead to a better

understanding of health and diseases (Liao et al., 2015).

One common application of NLP in EHRs is the identification of patient cohorts in secondary

analysis, a task that is also called patient phenotyping. In secondary analysis, researchers aim to find

patient populations with certain commonalities, for example advanced lung disease, within all the

patient records in the EHR. Studying these populations can give valuable insights into the disease

progression, identify preventable hospital admission patterns, and even assist in the development of

new treatment strategies (Ananthakrishnan et al., 2013, Pivovarov and Elhadad, 2015, Halpern et al.,

2016). NLP is required in this task, since the information is often only found in the textual notes.

NLP-based secondary analysis of data from EHRs is thus crucial to better understand the hetero-

geneity of treatment effects and to individualize patient care (Celi et al., 2016).

Apopular approach to patient phenotypingusingNLP is based on extractingmedical phrases from

texts and using them as input to build a predictive model (Hripcsak and Albers, 2013). The dictio-

nary of relevant phrases is often task-specific and its development requires significant effort and a

deep understanding of the task from domain experts (Carrell et al., 2014). A different approach is

to develop a fully rule-based algorithm for each condition (Kirby et al., 2016). While this approach

leads to a high performance, the development of these phenotyping models is time-consuming due to

the laborious tasks required of clinicians and are thus rarely deployed outside of the research area.

However, deep learning might prove to be a generalizable approach for phenotyping with less in-

tense domain expert involvement. Applications of deep learning for other tasks in healthcare have
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shownpromising results; examples includemortality prediction (Ranganath et al., 2016), patient note

de-identification (Dernoncourt et al., 2017), skin cancer detection (Esteva et al., 2017), and diabetic

retinopathy detection (Gulshan et al., 2016).

However, in order for deep learning to be a valid alternative to the clinician-supervised processing

pipelines, their predictions need to be understandable. This is crucial for healthcare applications since

results can directly impact decisions about patients health. Furthermore, clinicians are specialized do-

main experts and thus expect applications to support their decision making as opposed to make deci-

sions for them. Therefore, interpretable models are required so that clinicians can trust and control

their results (Caruana et al., 2015). Interpretabile algorithms are even required by law in the Euro-

pean Union due to the “right to explanation” (Goodman and Flaxman, 2017). While much work has

been done to understand deep learning NLP models and develop understandable models (e.g., Zeiler

et al., 2010, Yosinski et al., 2015, Strobelt et al., 2018b), their complex interactions between inputs

are inherently less understandable than parameters of linear models or rule-based approaches that are

fully clinician-defined.

We aim to better understand the differences between the deep learning and concept extraction ap-

proaches in terms of performance and interpretability. Specifically, we assess the utility of CNNs as

an approach to text-based patient phenotyping. We compare CNNs to entity extraction systems us-

ing the Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES, Savova et al., 2010),

and simple baseline methods such as logistic regression models using n-gram features. Using a cor-

pus of 1,610 discharge summaries that were annotated for ten different phenotypes, we show that

CNNs outperform both extraction-based and n-gram-based methods. To evaluate the interpretabil-

ity of each model, we follow the identified properties of the end user from Section 3.1 in that we aim

to abstract away anything network-specific and instead report the most important input features for

a predictions. We assess whether the identified relevant phrases are correctly associated with each phe-

notype and ask clinicians for their preferred explanation of a prediction. The results indicate that the
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explanations from the CNN-based models are often preferred to the more traditional models, but are

often noisy. Moreover, clinicians remarked that, while these explanations help them understand the

prediction, they do not always cover the same phrases they would have used to support their assess-

ment.

4.1 Phenotyping in large EHR datasets

With the growing adoption rate of EHRs (Charles et al., 2013), researchers gain access to rich data sets,

such as the Medical Information Mart for Intensive Care (MIMIC) database (Saeed et al., 2002, John-

son et al., 2016), and the Informatics for IntegratingBiology and theBedside (i2b2)datamarts (Uzuner

et al., 2008, Uzuner, 2009, Uzuner et al., 2010, 2011, Sun et al., 2013, Stubbs and Uzuner, 2015).

These data sets can be explored and mined in numerous ways (Jensen et al., 2012). Intelligent ap-

plications for patient phenotyping can support clinicians by reducing the time they spend on chart

reviews, which takes up a significant fraction of their daily workflow (Chen et al., 2016, Topaz et al.,

2016).

Accurate patient phenotyping is required for secondary analysis of EHRs to correctly identify the

patient cohort and to better identify the clinical context (Ackerman et al., 2016, Razavian et al., 2015).

Studies employing a manual chart review process for patient phenotyping are naturally limited to a

small number of preselected patients. Therefore, NLP is necessary to identify information that is

contained in text but may be inconsistently captured in the structured data, such as recurrence in

cancer (Carrell et al., 2014, Strauss et al., 2013), whether a patient smokes (Uzuner et al., 2008), clas-

sification within the autism spectrum (Lingren et al., 2016), or drug treatment patterns (Savova et al.,

2012). However, unstructured data in EHRs, for example progress notes or discharge summaries, are

not typically amenable to simple text searches because of spelling mistakes, synonyms, and ambiguous

terms (Nadkarni et al., 2011). To help address these issues, researchers utilize dictionaries and ontolo-
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gies for medical terminologies such as the unified medical language system (UMLS) (Bodenreider,

2004) and the systematized nomenclature of medicine – clinical terms (SNOMED CT) (Spackman

et al., 1997).

Examples of systems that employ such databases and extract concepts from text are the Knowl-

edgeMap Concept Identifier (KMCI) (Denny et al., 2003), MetaMap (Aronson and Lang, 2010),

Medlee (Friedman et al., 1994), MedEx (Xu et al., 2010), and the cTAKES. These systems identify

phrases within a text that correspond to medical entities (Savova et al., 2010, Denny et al., 2012). This

significantly reduces the work required from researchers, who previously had to develop task-specific

extractors (Hripcsak et al., 2002). Extracted entities are typically filtered to only include concepts re-

lated to the patient phenotype under investigation and either used as features for a model that predicts

whether the patient fits the phenotype, or as input for rule-based algorithms (Hripcsak and Albers,

2013, Lingren et al., 2016, Pradhan et al., 2015). Liao et al. (Liao et al., 2015) describe the process of

extraction, rule-generation and prediction as the general approach to patient phenotyping using the

cTAKES (Ananthakrishnan et al., 2013, Perlis et al., 2012, Xia et al., 2013, Liao et al., 2010), and test

this approach on various data sets (Carroll et al., 2012). The role of clinicians in this task is both to

annotate data and to develop a task-specific dictionary of phrases that are relevant to a patient pheno-

type. Improving existing approaches often requires significant additional time-investment from the

clinicians, for example by developing and combining two separate phrase-dictionaries for pathology

documents and clinical documents (Carrell et al., 2014). The cost and time required to develop these

algorithms limit their applicability to large or repeated tasks. While a usable system would offset the

development costs, it does not address the problem that a specialized NLP system would have to be

developed for every task in a hospital. Moreover, algorithms often do not transfer well between dif-

ferent hospitals, warranting extensive transferability studies (Ye et al., 2017). The deep learning based

approach we evaluate in this paper does not require any hand-crafted input and can easily be retrained

with new data. This can potentially increase the transferability of studies while removing the time
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required to develop new phrase-dictionaries.

4.2 Data

Thenotesused in this study are extracted fromtheMIMIC-III database (Johnson et al., 2016). MIMIC-

III contains de-identified clinical data of over 53,000 hospital admissions for adult patients to the in-

tensive care units (ICU) at the Beth Israel Deaconess Medical Center from 2001 to 2012. The dataset

comprises several types of clinical notes, including discharge summaries (n=52,746) andnursing notes

(n=812,128). We focus on the discharge summaries since they are the most informative for patient

phenotyping (Sarmiento and Dernoncourt, 2016). More specifically, we investigate phenotypes that

may associate a patient with being a ‘frequent flyer’ in the ICU (defined as ≥ 3 ICU visits within

365 days). As many as one third of readmissions have been suggested to be preventable; identifying

modifiable risk factors is a crucial step to reducing them (Kocher and Adashi, 2011). However, the

underlying conditions that lead to frequent hospital visits are often not captured in the structured

disease codes, which motivates the use of NLP techniques to identify them for further study.

To create a balanced dataset, we extracted the discharge summary of the first visit from all 415 ICU

frequent flyers in MIMIC-III, as well as 313 randomly selected summaries from later visits of the same

patients. We additionally selected 882 random summaries from patients who are not frequent flyers,

yielding a total of 1,610 notes. The cTAKES output for these notes contains a total of 11,094 unique

CUIs.

Following clinician-defined definitions, 1,610 notes were annotated for ten phenotypes: advanced

/metastatic cancer, advancedheart disease, advanced lungdisease, alcohol abuse, chronicpain, chronic

neurologic dystrophies, depression, obesity, substance abuse, other psychiatric disorders. To ensure

high-quality labels and minimize errors, each note was labeled at least twice for each phenotype. The

annotators included two clinical researchers, two junior medical residents, two senior medical resi-
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dents, and a practicing intensive care medicine physician. In the case that the annotators were uncer-

tain or disagreed, one of the senior clinicians decided on the final label. The resulting frequency of

each phenotype varies from 126 to 460 cases, which corresponds to between 7.5% and 28.6% of the

dataset. When measuring the inter-annotator agreement through the Cohen’s Kappa measure well

specified phenotypes such as depression have a very high agreement (0.95), whereas other phenotypes,

such as chronic neurologic dystrophies, have a lower agreement 0.71 and required more interventions

by senior clinicians.

4.3 Methods

4.3.1 Concept-Extraction Based Methods

We use cTAKES to extract concepts from each note. In a first step, cTAKES tokenizes the notes and

normalizes the tokens such that tokens with variations (e.g. plural) are represented as their base form.

The normalized tokens are tagged for their part-of-speech (e.g. noun, verb), and a shallow parse tree is

constructed to represent the grammatical structure of a sentence. Finally, a named-entity recognition

algorithm uses this information to detect named entities for which a concept unique identifier (CUI)

exists in UMLS (Spackman et al., 1997).

We follow previous phenotyping work by using the frequency of occurences of relevant concepts

in a note as input to machine learning algorithms to directly learn to predict a phenotype (Liao et al.,

2015, Bates et al., 2016, Kang et al., 2013). We specify two different approaches to using the cTAKES

output. The first approach uses the complete list of extracted CUIs, represented as a bag-of-CUIs as

input to further processing steps. In the second approach, clinicians specify a dictionary comprising

all clinical concepts that are relevant to the desired phenotype (e.g. Alcohol Abuse) as described by

Carrell et al. (Carrell et al., 2014). Due to the fact that cTAKES detects negations, the occurrences of

negated and non-negated CUIs are counted separately.
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Figure 4.1: An overview of the CNN architecture. (A) Each word within a discharge note is represented as its
word embedding. (B) Convolu ons of different widths are applied to word sequences of the corresponding length. (C)
The resul ng vectors are reduced to only the highest value for each of the different convolu ons via a pooling opera-
on. (D) The final predic on is made by compu ng a weighted combina on of the pooled values and applying a sigmoid

func on. This figure is adapted with permission from Kim (2014).

In the predictive model, the input representation is first transformed using the term frequency–

inverse document frequency (TF-IDF), following Halpern et al. (2016). We then train multiple pre-

dictive non-neural models to detect whether a patient has a condition. For an accurate comparison to

approaches in literature, we train a random forest (RF), a naive Bayes (NB), and a logistic regression

(LR) model.

4.3.2 Convolutional Neural Networks

We compare the concept-extraction baseline to a text-classification CNN as described in Chapter 2.3.

For each of the phenotypes, we train a separate CNN that uses the text in a note x to predict the

probability that the patient has a phenotype, y. The text in a discharge summary is first represented as

a sequence of word embeddings x1, . . . , xS . Word embeddings have shown to improve performance

on other tasks based on EHRs, for example named-entity recognition, and avoid having to create a

database of common synonyms and misspellings (Carrell et al., 2014, Wu et al., 2015). They can be
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pre-trained on a larger corpus of texts, which improves results of the NLP system and reduces the

amount of data required to train a model (Erhan et al., 2010, Luan et al., 2015). We thus pre-train our

embeddings with word2vec (Mikolov et al., 2013) on all discharge notes available in the MIMIC-III

database (Johnson et al., 2016).

In parallel, we apply convolutional filters with different widths 1, . . . ,K to the sequence of word

embeddings. For each filter width k, this operation results in a sequence of hidden representations

h(k)1 , . . . , h(k)S−k+1. We apply max-over-time-pooling to each of these sequences individually, which

means that we extract the highest values for each dimension for each of the filters (Collobert et al.,

2011). We are left with K pooled vectors, each of dimension D, ĥ
(1)

, . . . , ĥ
(K)

. In a final step, we

concatenate the pooled vectors and apply a final linear layer, such that

y = σ(W
[
ĥ
(1)

, . . . , ĥ
(K)
]
+ b).

An overview of our architecture is shown in Fig 4.1.

4.3.3 Additional Baselines

We further investigate a number of baselines to compare with the more complex approaches. We start

with a bag-of-words based logistic regression and gradually increase the complexity of the baselines

until we reach the CNN. This provides an overview of how adding more complex features impact

the performance in this task. Moreover, this investigation shows what factors contribute most to the

CNN performance.

Bag of Words The simplest possible representation for a note is a bag of words (BoW) which

counts phrases of length 1. Let V denote the vocabulary of all words, and vi the word at position i.

Let further δ(vi) ∈ R1×|V| be a one-hot vectorwith a one at position vi. Then, a notex is represented
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asxBoW =
∑

i δ(vi). A prediction is made by computing y = σ(WxBoW + b), whereW and b are

trainable parameters.

n-grams Thebag-of-words approach canbe extended to include representations for longerphrases,

also called n-grams, as well. Consider a note “The sick patient”. While a bag-of-words approach con-

siders each word separately, a two-gram model additionally considers all possible phrases of length

two. Thus, the model would also consider the phrases “The sick” and “sick patient”. Since the num-

ber of possible phrases grows exponentially in the size of the vocabulary, the data for longer phrases

becomes very sparse and the n-gram size can’t be increased too much. In this study, we present results

for models with phrase lengths of up to 5.

4.4 Deriving Salient Features

The inability of humans to understand predictions of complex machine learning models poses a diffi-

cult challengewhen such approaches areused inhealthcare (Lipton, 2018). Crucially,well-performing

approaches should be understood and trusted by those who use them. Users of these approaches

should be aware of biases that models learn to avoid basing medical decisions on them. One exam-

ple of bias was found in mortality prediction pneumonia patients where an occurrence of asthma

seemingly increased the survival probability of a patient (Cooper et al., 1997, Caruana et al., 2015).

This result was due to an institutional practice of admitting all patients with pneumonia and a his-

tory of asthma to the ICU regardless of disease severity. As a result, a history of asthma was strongly

correlated with a lower illness severity. If someone blindly interpreted the result of this analysis as ac-

tionable, patients with asthma could have been assigned a lower priority due to an underestimate of

theirmortality risk. This correlationwas only detected because themodelwas linearwhichmeans that

the model weights associated with a feature such as asthma were directly interpretable. Experts can

double-check whether the features with highest and lowest correspond to their domain knowledge.
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We approach the interpretability of the cTAKES and CNN model in a similar way. To measure

the interpretability of each approach, clinicians are presented a list of phrases or concepts that are

most salient for a particular prediction; this list either manifests as an actual list or as highlights of the

original text (Lei et al., 2016, Ribeiro et al., 2016).

We first consider the filtered cTAKES random forest approach. The filtering of the input-features

ensures that all features directly pertain to the specificphenotype (Ranganath et al., 2016). We rank the

importance of each remainingCUIusing the gini importance of the trainedmodel (Stone, 1984). The

resulting ranking is a direct indication of the globally most relevant CUIs. An individual document

can be analyzed by ranking only the importance of CUIs that occur in this document.

To compute the most relevant phrases for the CNN, we propose a modified version of the first-

derivative saliency as defined by Li et al. (2016a). They define the saliency for a neural network as

the norm of the gradient of the loss function for a particular prediction with respect to an input x.

Let S1 denote the Saliency function for the prediction 1, which in our case corresponds to a positive

identification with a phenotype. Then, the saliency for a word xi is defined as

S1(xi) =
∥∥∥∥
∂L(1, y)

∂xi

∥∥∥∥
2

.

We are not able to directly apply this method for the CNN, since xi only represents a single word

or a single dimension of its embedding. Thus, we extend the saliency definition to instead compute

the relevance of entire phrases by taking the gradient with respect to the pooled features, a measure

which we call phrase-saliency. The phrase-saliency approximates how much a phrase contributes to a

prediction,

S1(xi:i+k−1) =

∥∥∥∥∥
∂L(1, y)

∂ĥ
(k)
i

∥∥∥∥∥
2

.

Since we employ multiple feature maps of different widths, we compute the phrase-saliency across
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all of them, and use those with maximum value. The saliency can be measured on a per-document

basis. To arrive at the globally most relevant phrases, we iterate over all documents and measure the

phrases that had the highest phrase-saliency while removing duplicate phrases. Alternative methods

not considered in this work search the local space around an input (Ribeiro et al., 2016), or compute a

layer-wise backpropagation (Denil et al., 2014, Arras et al., 2017, Bach et al., 2015, Arras et al., 2016).

We note that it was recently pointed out by Smilkov et al. (2017b) that our definition of saliency is

limited when the model performs too well. Specifically, as the loss converges toward 0, the magnitude

of the gradients decreases until the saliency can no longer be measured. They thus develop smooth-

grad, a method that is robust to this effect by first introducing noise around an input and then repeat-

edly computing the saliency for those samples. Koehn (2019) further show that the method can lead

to strong estimates of the saliency for NLP models.

4.5 Evaluation

4.5.1 Quantitative Performance Measures

We evaluate the precision, recall, F1-score, and area under the ROC curve (AUC) of all models as a

quantitative measure. The F-score is derived from the confusion matrix for the results on the test set.

A confusion matrix contains four counts: true positive (TP), false positive (FP), true negative (TN),

and false negative (FN). The precision P is the fraction of correct predictions out of all the samples

that were predicted to be positive TP
TP+FP . The recall R is the percentage of true positive predictions

in relation to all the predictions that should have been predicted as positive TP
TP+FN . The F1-score is

the harmonic mean of both precision and recall 2 ∗ P∗R
P+R .

For all models, the data is randomly split into a training, validation, and test set. 70% of the labeled

data is used as the training set, 10% as validation set and 20% as test set. While splitting, we ensure

that a patients’ notes stay within the set, so that all discharge notes in the test set are from patients
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that were not previously seen by the model. The reported numbers across different models for the

same phenotype are obtained from testing on the same test set. The validation set is used to choose

the hyperparameters for the models.

In summary, we present results for the following approaches:

CNN The convolutional neural network with best performing convolution width

BoW Baseline using a bag of words representation of a note and logistic regression

n-gram Baseline using an n-gram representation of a note and logistic regression

cTAKES full The best performing model that uses the full output from cTAKES

cTAKES filter The best performing model using the filtered CUI-list from cTAKES

4.5.2 Assessing Interpretability

Inorder to evaluate howunderstandable the predictions of the different approaches are, we conducted

a study of the globally most relevant phrases and CUIs. For each phenotype, we computed the five

most relevant features, yielding a total of 50 phrases and 50 CUIs. We then asked clinicians to rate the

features on a scale from 0 to 3 with the following descriptions for each rating:

0 The phrase/CUI is unrelated to the phenotype.

1 The phrase is associated with the concept subjectively from clinical experience, but is not directly

related (e.g. alcohol abuse for psychiatric disorder).

2 The phrase has to do with the concept, but is not a definite indicator of its existence (e.g. a medi-

cation).

3 The phrase is a direct indicator of the concept or very relevant (e.g. history of COPD for advanced

lung disease).
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The features were shown without context other than the name of the phenotype. We additionally

provided an option to enter free text comments for each phenotype. We note that all participating

clinicians were involved with annotation of the notes and are aware of the definitions for the pheno-

types. However, the they were not told about the origin of the phrases before rating them in order to

prevent potential bias. In total, we collected 300 ratings, an average of three per feature.

4.6 Results

We show an overview of the F1-scores for different models and phenotypes in Fig 4.2. For almost

all phenotypes, the CNN outperforms all other approaches. For some of the phenotypes such as

Obesity and Psychiatric Disorders, the CNN outperforms the other models by a large margin. A

χ2 test confirms that the CNN’s improvements over both the filtered and the full cTAKES models

are statistically significant at a p ≤ 0.01 level. There is only a minimal improvement when using

the filtered cTAKES model, which requires much more effort from clinicians, over the full cTAKES

model. The χ2 test confirms that there is no statistically significant improvement of this method on

our data with a p-value of 0.86. We also note that the TF-IDF transformation of the CUIs yielded a

small average improvement in AUC of 0.02 (σ = 0.03) over all the considered models.

The n-gram and bag-of-words based methods are consistently weaker than the CNN, corroborat-

ing the findings in literature that word embeddings improve performance of clinical NLP tasks (Wu

et al., 2015). We additionally investigate whether considering longer phrases improves model perfor-

mance. In Fig 4.3, we show the difference in F1-score between models with phrases up to a certain

length and models that use bag-of-words or bag-of-embeddings. There is no significant difference in

performance for longer phrases in n-gram models. There is, however, a significant improvement for

phrases longer than one word for the CNN, showing that the CNN model architecture complements

the embedding-based approach and contributes to the result of the model.
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Figure 4.2: Comparison of achieved F1-scores across all tested phenotypes. The le three models directly
classify from text, the right two models are concept-extrac on based. The CNN outperforms the other models on most
tasks.

Figure 4.3: Impact of phrase length on model performance. The figure shows the change in F1-score between
a model that considers only single words and a model that phrases up to a length of 5.

Experiments that used both raw text and CUIs as input to a CNN showed no improvement over

only using the text as input. This shows that the information encoded in the CUIs is already available

in the text and is detected by the CNN. We hypothesize that encoding information available in UMLS

beyond the CUI itself can help to improve the phenotype detection in future work.

We show the most salient phrases according to the CNN and the filtered cTAKES LR models for

Advanced Heart Disease and for Alcohol Abuse in Table 4.1. Both tables contain many of the phrases

mentioned in the annotation instructions as highly relevant to a phenotype, such as “Cardiomyopa-
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thy” for advanced heart disease. We also observe mentions of “CHF” and “CABG” for Advanced

HeartDisease for bothmodels, which are commonmedical conditions associatedwith advanced heart

disease, but were not sufficient requirements on their own according to the annotation scheme. The

model still learned to associate those phrases with advanced heart disease, since those phrases also oc-

cur in many notes from patients that were labeled positive for advanced heart failure. The phrases for

Alcohol Abuse illustrate how the CNN can detect mentions of the condition in many forms. With-

out human input, the CNN learned that EtOH and alcohol are used synonymously with different

spellings and thus detects phrases containing either of them. The filtered cTAKES RF model surpris-

ingly ranks victim of abuse higher than the direct mention of alcohol abuse in a note, and finds that it

is very indicative of Alcohol Abuse if an ethanol measurement was taken. While the CUIs extracted

by cTAKES can be very generic, such as “Atrium, Heart” or “Heart”, the salient CNN phrases are

more specific.

In the quantitative study of relevant phrases and CUIs, phrases from the CNN received an average

rating of 2.44 (σ=0.89), and the cTAKES based approach received an average rating of 1.9 (σ=0.97).

A t-test for two independent samples showed that there is a statistically significant difference between

the twowith p < 0.00001. This indicates that the fivemost relevant features from theCNNaremore

relevant to a phenotype than the five most relevant features from a cTAKES-based model. The free-

text comments confirmour descriptive results; theCNN-based phrases are seen as specific and directly

relating to a patient’s condition while the CUI’s are seen as more generic. Moreover, clinicians were

impressed to see phrases such as “h o withdrawal” for alcohol abuse (short for “history of”), which

are typically difficult to interpret by non-experts. Some of the longer phrases from the CNN for the

depression phenotype showed the word “depression” amids other diseases, indicating that the phrase

is taken from a diagnosis section of the discharge summary. Clinicians commented that this helped

them to contextualize the phrase and that it was more helpful than seeing the word “depression” in

isolation. This indicates that giving further contextual information canhelp to increaseunderstanding
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cTAKES CNN
Advanced Heart Disease

Magnesium Wall Hypokinesis
Cardiomyopathy Port pacer
Hypokinesia Ventricular hypokinesis
Heart Failure p AVR
Acetylsalicylic Acid post ICD
Atrium, Heart status post ICD
Coronary Disease EF 20 30
Atrial Fibrillation bifurcation aneurysm clipping
Coronary Artery CHF with EF
Disease cardiomyopathy , EF 15
Aortocoronary Bypasses ( EF 20 30
Fibrillation coronary artery bypass graft
Heart respiratory viral infection by DFA
Catheterization severe global free wall hypokinesis
Chest Class II , EF 20
Artery lateral CHF with EF 30
CAT Scans, X-Ray anterior and atypical hypokinesis akinesis
Hypertension severe global left ventricular hypokinesis
Creatinine Measurement ’s cardiomyopathy , EF 15

Alcohol Abuse
Victim of abuse Consciousness Alert
Ethanol Measurement Alcohol Abuse
Alcohol Abuse EtOH abuse
Thiamine Alcoholic Dilated
Social and personal history ETOH cirrhosis
Family history heavy alcohol abuse
Hypertension evening Alcohol abuse
Injuries risk Drug Reactions Attending
Pain alcohol withdrawal compartment syndrome
Sodium EtOH abuse with multiple
Potassium Measurement liver secondary to alcohol abuse
Plasma Glucose Measurement abuse crack cocaine, EtOH

Table 4.1: The most salient phrases for Advanced Heart Failure and Alcohol Abuse. The salient cTAKES CUIs are ex-
tracted from the filtered RF model.

of predictions.
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4.7 Discussion and Conclusion

Our results show that CNNs provide a valid alternative approach to the identification of patient con-

ditions from text. However, we notice a strong variation in the results between phenotypes with

AUCsbetween73 and100, andF1-scores between57 and97, evenwith consistent annotation schemes

and high annotator agreement. Some concepts such as Chronic Pain are especially challenging to de-

tect, even with 321 positive examples in the data set. This makes it difficult to compare our results

to other reported metrics in the literature, since studies typically consider different concepts for de-

tection. This problem is further amplified by the sparsity of available studies that investigate unstruc-

tured data (Liao et al., 2015), and the lack of standardized datasets for this task. We hope that the

release of our annotations will support work towards a more comparable performance in text-based

phenotyping.

Since bias in data collection and analysis is at times unavoidable, models are required to be inter-

pretable in order for clinicians to be able to detect such biases, and alter the model accordingly (Caru-

ana et al., 2015). Furthermore, interpretable models lead to an increased trust from the people who

use them (Lipton, 2018). The interpretability is typically considered to be amajor advantage of rule or

concept-extraction based models that are specifically tailored to a given problem. Clinicians have full

control over thedictatedphrases that areused as input to amodel. Wedemonstrated thatCNNscanbe

interpreted in the same way as concept-extraction based models by computing the saliency of inputs.

This even leads to a higher level of interpretability in that the extracted phrases are more relevant to a

phenotype than the extracted CUIs. However, a disadvantage of CNNs is that they are designed to

consider more different phrases than concept-extraction based methods. Thus, lists of salient phrases

will naturally contain more items, making it more difficult to investigate which phrases lead to a pre-

diction. However, restricting the list to a small number of items with the highest saliency coefficients

or only including those above a saliency threshold can compensate for the length of the list. The ques-
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tion that developers of such models will ultimately have to answer is whether the trade-off between

increased performance is worth the additional effort to extract and show relevant phrases.

Clinicians further noted the general limitation of saliency methods that they only provide static

and superficial insight into a prediction. Many clinicians noted that seeing the relevant phrases as

highlights within a full note would be much more useful than seeing them in isolation, which shows

that there are many opportunities for smart interfaces that help clinicians parse medical notes. More-

over, we experienced that some of the phrases started discussions and sparked hypotheses about a pa-

tient whenever the explanation did not match the expectation of a clinician. Having more powerful

methods and interactions would allow clinicians to follow these hypotheses.

Taking all these points into consideration, we conclude that deep learning provides a valid alter-

native to concept extraction based methods for patient phenotyping. Using CNNs can significantly

improve the accuracy of patient phenotyping without needing any phrase-dictionary as input. We

showed that concerns about the interpretability of deep learning can be addressed by computing a

gradient-based saliency to identify phrases associated with different phenotypes. We propose that

CNNs should be employed alongside concept-extraction based methods to analyze and mine un-

structured clinical narratives and augment the structured data in secondary analysis of health records.

However, we also identified opportunities for future development of methods and interactive inter-

faces that help with the understanding of complex neural models.
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5
Interactively Understanding Recurrent

Neural Networks

The saliency methods introduced above can identify features that are most relevant for a particular

prediction. However, models for NLG have to make multiple sequential predictions, each condi-

tioned on all the previous time steps. Thus, the analysis of these models requires different methods.

In addition, we identified that non-interactive explanations may not be sufficient to fully understand
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the inductive biases of a model. In this section, we aim to explore what a model has learned from the

perspective of architects and trainers. This definition allows us to develop interpretability methods

that involve knowledge about the underlying model which can lead to more powerful interactions.

Recall from Chapter 2.3.4 that most commonly used approach to sequence modeling are RNNs.

RNNs produce a time-series of hidden states in RD that change as the network observes inputs. A

function RNN uses an input representation xt at a time step t and its previous hidden state ht−1

to compute the new hidden state ht. RNNs utilize these hidden states to represent the features of

sequence of inputs. This work mainly focuses on the RNN-variant of long short-term memory net-

works (LSTM,Hochreiter andSchmidhuber, 1997). LSTMsmaintain a cell state vector ct in addition

to the hidden state vector at each time step. For simplicity, however, we refer to any hidden represen-

tation within a RNN as hidden states.

Previous empirical results indicate that these hidden states learn to capture complex relationships

between the words within a sentence or document. Among others, recurrent representations have

led directly to improvements in machine translation (Kalchbrenner and Blunsom, 2013, Sutskever

et al., 2014), speech recognition (Amodei et al., 2016), music generation (Boulanger-Lewandowski

et al., 2012), and text classification (Dai and Le, 2015). The application we investigate here is language

modeling (Mikolov et al., 2010, Zaremba et al., 2014). In language modeling, at time t the prefix

of words x1, . . . , xt is taken as input and the goal is to model the distribution over the next word

p(xt+1|x1, . . . , xt). An RNN is used to produce the corresponding hidden representation ht. xt+1

is then predicted by applying a multi-class classification layer based on the hidden feature-state vector

ht, such that p(xt+1|x1, . . . , xt) = softmax(Wht + b), whereW, b are parameters.

While RNNs have shown clear improvements for sequence modeling, it has proven very difficult

to interpret their feature representation. As such, it remains unclear exactly how a particular model

is representing long-distance relationships within a sequence. Typically, RNNs contain millions of

parameters and utilize repeated transformations of large hidden representations under time-varying
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conditions. How do we enable users to explore complex network interactions in an RNN and directly

connect these abstract representations to human understandable inputs?

In this work, we aim to analyze the change in the hidden representations over time. We refer to the

representation changes as the hidden state dynamics produced by the model. Specifically, we focus on

changes in a subset of the values in ht. We are interested in each d ∈ {1 . . . D} and in particular the

change of a single hidden state ht,d as t varies.

To enable the visual analysis of the hidden state dynamics, we have developed LSTMVis. LST-

MVis enables its users to form hypotheses about what an RNN may have learned and allows the

exploration of the hidden state dynamics as the means to investigate the hypotheses. The investiga-

tion of the hidden states requires knowledge about the underlying model, an assumption we did not

make with the saliency in the medical domain. Due to this, LSTMVis is focused on architects and

trainers, for which we performed a goal and task analysis to develop effective visual encodings and

interactions. Our system can be used to analyze any kind of hidden state within recurrent networks,

even the LSTM gates, however, in our experiments we found that the cell states are most indicative of

what a network has learned. LSTMVis combines a time-series based select interface with an interactive

match tool to search for similar hidden state patterns in a large dataset1.

5.1 Visualization for understanding neural networks

Our core contribution, visualizing the state dynamics of RNNs in a structured way, is inspired by

previous work on convolutional neural networks in vision applications (Simonyan et al., 2013, Zeiler

and Fergus, 2014). In linguistic tasks, visualizations have shown to be useful tool for understanding

certain aspects of RNNs. Karpathy et al. (2015) use static visualization techniques to help understand

hidden states in language models. Their work demonstrates that selected cells can model clear events

1A live system can be accessed via lstm.seas.harvard.edu
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such as openparentheses and the start ofURLs. Li et al. (2016a) present additional techniques, partic-

ularly the use of gradient-based saliency to find important words. Kádár et al. (2015, 2017) show that

RNNs specifically learn lexical categories and grammatical functions that carry semantic information,

partially by modifying the inputs fed to the model. While inspired by these techniques, our approach

tries to extend beyond single examples and provide a general interactive visualization approach of the

raw data for exploratory analysis.

There has also been prior work on interactive visualization for interpreting machine learning mod-

els. Tzeng and Ma (2005) present a visualization system for feed-forward neural networks with the

goal of interpretation, and Kapoor et al. (2010) demonstrate how to tune the training process within

a user-interface. The Prospector system (Krause et al., 2016) provides a general-purpose tool to better

understand their machine learning model and its predictions.

Most relevant to this work are systems that focus on analysis of hidden states for convolutional

neural networks. Liu et al. (2017) utilize a directed acyclic graph metaphor to show the connections

betweenhidden states and their learned features. Rauber et al. (2016) use low-dimensional projections

to explore relationships between neurons and learned observations. Other work has focused on user

interfaces formonitoringmodels, such asTensorBoard (Abadi et al., 2015) and the related playground

for convolutional neural models at playground.tensorflow.org/.

5.2 User Analysis and Goals

In the design process for LSTMVis, we decided to focus on the user role of architects. We aimed to

provide these users with greater visibility into the internals of the system. User feedback from our first

prototype further motivated us to include the trainer role as users with a focus on the predictions of

the model.

With these roles in mind, we aimed to help trainers and architects better understand the high-level
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question: “What information does an RNN capture in its hidden feature-states?”. Based on a series

of discussions with deep learning experts we identified the following domain goals:

• G1 - Formulate a hypothesis about properties that the hidden states might have learned to

capture for a specific model. This hypothesis requires an initial understanding of hidden state

values over time and a close read of the original input.

• G2 - Refine the hypothesis based on insights about learned textual similarities based on pat-

terns in the dynamics of the hidden states. Refining a hypothesis may also mean rejecting it.

• G3 - Compare models and datasets to allow early generalization about the insights the rep-

resentations provide, and to observe how task and domain may alter the patterns in the hidden

states.

During the design phase, we developed the following list of tasks that LSTMVis should support from

the three domain goals (G1–G3). The mapping of these tasks to goals is indicated by square brackets:

• T1 - Visualize hidden states over multiple time steps to allow exploration of the hidden state

dynamics in their raw form. [G1]

• T2 - Filter hidden states by selecting a subset of timesteps and a threshold of the minimum

activation levels throughout the selected steps. These selectionsmethods allow theuser to form

hypotheses and to separate visual signal from noise. [G1,G2]

• T3 - Match selections to similar examples based on hidden state activation pattern. A

matched phrase should have intuitively similar characteristics as the selection to support or

reject a hypothesis. [G2]

• T4 - Align textual annotations visually to matched phrases. These annotations allow the

user to compare the learned representation with alternative structural hypotheses such as part-
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of-speech tags or known grammars. The set of annotation data should be easily extensible.

[G2,G3]

• T5 - Provide a general interface that can be used with any RNN model and text-like dataset.

It should make it easy to generate crowd knowledge and trigger discussions on similarities and

differences between a wide variety of models. [G3]

This list of tasks provided a guideline for the design of LSTMVis. In addition, tasks (T1-T4) de-

fine the core interaction mechanisms for discovery: Visualize (Section 5.3.1) – Filter & Select (Sec-

tion 5.3.2) – Match & Align (Section 5.3.3). We will first describe the implementation of these inter-

actions and demonstrate their application to multiple use cases in Section 5.4.

5.3 Design of LSTMVis

LSTMVis, shown in Figure 5.1, is composed of two major visual analysis components. The Select

View supports the formulation of a hypothesis (T2, G1) by using a novel visual encoding for hidden

state changes (T1). The Match View (Section 5.3.3) allows refinement of a hypothesis (T3, T4, G2)

while remaining agnostic to the underlying data or model (T5).

The design of interactive visualization tools is challenging to evaluate. It is crucial to avoid con-

founding the effects of choices about the interface and those that stem from the possible interactions.

The centralmeasure that the design should optimize is whether the tool is useful to the intended users,

in our case architects and trainers. We thus followed an iterative design process, inwhichmultiple low-

fidelity prototypes were developed and evaluated in collaboration with domain experts, i.e., architects

and trainers. Upon their approval of the final design, we released it to a broader audience online to

collect long-term feedback. This feedback was used to subsequently improve the system which we

describe in the following.
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Figure 5.1: The LSTMVis user interface. The user interac vely selects a range of text specifying a hypothesis about the
model in the Select View (a). This range is then used to match similar hidden state pa erns displayed in the Match View
(b). The selec on is made by specifying a start-stop range in the text (c) and an ac va on threshold (t) which leads to
a selec on of hidden states (blue lines). The start-stop range can be further constrained using the pa ern plot (d). The
meta-tracks below depict extra informa on per word posi on like POS (e1) or the top K predic ons (e2). The tool can
then match this selec on with similar hidden state pa erns in the dataset of varying lengths (f), providing insight into
the representa ons learned by the model. The match view addi onally includes user-defined meta-data encoded as
heatmaps (g1,g2). The color of one heatmap (g2) can be mapped (h) to the word matrix (f) which allows the user to see
pa erns that lead to further refinement of the selec on hypothesis. Naviga on aids provide convenience (i1, i2).

5.3.1 Visualization of Hidden State Changes

Visualizing the progression of hidden state vectors h1, . . . , hT along a sequence of words (time-steps)

is at the core of LSTMVis. In the following, we refer to one hidden state as one dimension of the

D-dimensional hidden state vector. To visualize the state dynamic, we decided to consider each hid-

den state as a data item and time-steps as dimensions for each data item in a parallel coordinates plot.

Doing so, we encode the hidden state value using the effective visual variable position. The next chal-

lenge that the visual design addresses is the formulation of a hypothesis. Allowing the user to perform

selection by directly manipulating the hidden state values felt decoupled from the original source of

information—the text. The key idea to facilitate this selection process was to allow the user to eas-
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Figure 5.2: Snippet of the first complete prototype. While the list of selected cells (a) and the brushing method (c) re-
mained in the final version, we modified the pa ern plot (b) and omi ed the redundant encodings (d) and (e).

ily discretize the data based on a threshold and select on and off ranges directly on top of the words

(Section 5.3.3).

Figure 5.2 shows the first complete prototype that we put online to collect long-term user feedback.

Several user comments pointed out that the redundant encoding of hidden states that are “on” in the

SelectView (Figure 5.2d,e)was notwell understood. In the final design shownon the top in Figure 5.1

we omitted this redundant encoding for the sake of clarity and to highlight wider regions of text. The

x-axis is labeled with the word inputs x1, . . . , xT for the corresponding time-step. If words do not

fit into the fixed width for time steps they are distorted. Figure 5.1 shows the movement of a hidden

state vector through an example sequence.

5.3.2 Select View

The Select View, shown in the top half of Figure 5.1, is centered around the parallel coordinates plot

for hidden state dynamics. The full plot comprising all the hidden states can be difficult to compre-
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Figure 5.3: The hypothesis selec on process. (a) The selec on covers a little prince and has a threshold ℓ = 0.3.
Blue highlighted hidden states are selected. (b) The threshold ℓ is raised to 0.6. (c) The pa ern plot in the bo om is
extended le , elimina ng hidden states with values above ℓ a er reading of (one word to the le ). (d) The pa ern plot
is addi onally extended right, removing hidden states above the threshold a er reading “.” (one word to the right). I.e.,
only hidden states are selected with the following pa ern: below threshold ℓ for one word before – above ℓ during a
little prince – below ℓ for one word a er.

hend directly. Therefore, LSTMVis allows the user to formulate a hypothesis (G1) about the seman-

tics of a subset of hidden states by selecting a range of words that may express an interesting prop-

erty. For instance, the user may select a range of words within tree-structured text (Section 5.4.1), a

representative noun phrase in a text corpus (Section 5.4.2), or a chord progression in a musical cor-

pus(Section 5.4.3).

Figure 5.3 demonstrates the selection process. To select, the user brushes over a range of words that

form the pattern of interest. In this process, she implicitly selects hidden states that are “on” in the

selected range. The dashed red line on the parallel coordinates plot indicates a user-defined threshold

value, ℓ, that partitions the hidden states into “on” (timesteps ≥ ℓ) and “off” (timesteps < ℓ) within

this range. In addition to selecting a range, the user can modify the selection to define that hidden

statesmust alsobe “off” immediately before or after the selected range. This is necessary todifferentiate

those hidden states that are active for the pattern under investigation from those cells that are active

for more time steps. Figure 5.3 shows different range selections and the corresponding hidden states.

Using these selection criteria the user creates a set of selected hidden statesS1 ⊂ {1 . . . D} that follow

the specified on/off pattern with regard to the defined threshold.

78



A user can also add aligned tracks of textual annotations (meta tracks) to the selection view. For ex-

ample, she can visualize part-of-speech (POS) annotations or named entity recognition (NER) results.

The feature of meta tracks is the result of feedback from multiple online users asking us to include the

tracks. Some users that used the tool for training also wanted to see the top K predictions (outcomes)

for each word. Figure 5.1 shows examples for POS (e1) and top K (e2).

These interaction methods allow the user to define a hypothesis as word range which results in the

selection of a subset of hidden states following a specified pattern above a defined threshold (T2, G1)

that only relies on the hidden state vectors themselves (T5). This hypothesis can be further informed

by the meta tracks. To refine or reject the hypothesis the user can then make use of the Match View.

5.3.3 Match View

The Match View (Figure 5.1b) provides evidence for or against the selected hypothesis. The view

presents a set of relevant matched phrases that have similar hidden state patterns as the phrase selected

by the user. These phrases are searched for within a dataset that is representative of the data that the

model was trained on. This ensures that the patterns in the dataset correspond to those learned by the

model.

With the goal of maintaining an intuitive match interface, we define “matches” to be ranges in the

dataset that would have lead to a similar set of hidden states under the selection criteria (threshold,

on/off pattern). Formally, we assume that the user has selected a threshold ℓwith hidden statesS1 and

has not limited the selection to the right or left further, as shown in Figures 5.3a and 5.3b. We rank all

possible candidate ranges in the dataset starting at time a and ending at time bwith a two step process

1. Collect the set of all hidden states that are “on” for the range,

S2 = {c ∈ {1 . . . D} : ht,c ≥ ℓ for all a ≤ t ≤ b}
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2. Rank the candidates by the number of overlapping states |S1 ∩ S2| using the inverse of the

number of additional “on” cells−|S1 ∪ S2| and candidate length b− a as tiebreaks.

If the original selection is limited on either side (as, for example, in Figures 5.3c or 5.3d), we modify

step (2) to take this into account for the candidates. For instance, if there is a limit on the left, we only

include state indices c in S2 in that also satisfy ha−1,c < ℓ. For efficiency, we do not score all possible

candidate ranges (datasets typically have T > 1 million). We limit the candidate set by filtering to

ranges with a minimum number of hidden states from S1 over the threshold ℓ. These candidate sets

can be computed efficiently using run-length encoding.

From the matching algorithm, we retrieve the top 50 results which are shown, one per row each, in

a word matrix (e.g., Figure 5.1f) located in the Match View. Each cell in the word matrix is linked to a

cell in corresponding heatmaps. These heatmaps encode additional information about each word in

the matching results. The always available match count heatmap (Figure 5.1-g1) encodes the number

of overlapping states |S1 ∩ S2| for each timestep.

The user can use additional annotations, similar to meta tracks in the Selection View, as heatmaps

(T4). These annotations act as ground truth data, e.g., part-of-speech tags for a text corpora (Fig-

ure 5.1-g2), or as further information to help calibrate the hypotheses, e.g., nesting depth of tree-

structured text. Figure 5.1 shows how hovering over “little” (mouse pointer) leads to highlights in the

match count heatmap (g1) indicating seven overlapping states between match and selection for this

position. The POS heatmap (g2) indicates that the word at this position is as adjective (ADJ).

The heatmap colors can be mapped directly to the background of the matches (Figure 5.1h) as a

simple method to reveal pattern across results (Figure 5.1f). Based on human identifiable patterns or

alignments, the matching and mapping methods can lead to further data analysis or a refinement of

the current hypothesis.
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5.4 Use Cases

In this section we highlight three use cases that demonstrate the general applicability of LSTMVis for

the analysis of hidden states.

5.4.1 Proof-of-Concept: Parenthesis Language

As proof of concept we trained an LSTM as language model on synthetic data generated from a very

simple counting language with a parenthesis and letter alphabet Σ = {( ) 0 1 2 3 4 }. The lan-

guage is constrained to match parentheses, and nesting is limited to be at most 4 levels deep. Each

opening parenthesis increases and each closing parenthesis decreases the nesting level, respectively.

Numbers are generated randomly, but are constrained to indicate the nesting level at their position.

For example, a string in the language might look like:

Blue lines indicates ranges of nesting level ≥1, orange lines indicate nesting level ≥2, and green lines

indicate nesting level≥3.

To analyze this language, we view the states in LSTMVis. An example of the cell states of a two-

layer LSTM model with 300 hidden states is is shown in Figure 5.4(a). In this example, even the initial

parallel coordinates plot shows a strong regularity, as hidden state changes occur predominately at

parentheses2.

Given this observation, we form the hypothesis that some hidden states are dedicated to track a

specific nesting level. To test this, we select a range spanning nesting level four by selecting the phrase

( 4. We immediately see that several hidden states seem to cover this pattern and that in the local

2In layer work, we demonstrated that even very small LSTMs are able to count the nesting level for much
deeper nested languages since they are able to use the hidden states to dynamically count (Suzgun et al., 2019)
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Figure 5.4: Plot of a phrase from the parenthesis synthe c language. (a) The full set of hidden states. Note the strong
movement of states at parenthesis boundaries. (b) A selec on is made at the start of the fourth level of nes ng. Even
in the select view it is clear that several hidden states represent a four-level nes ng count. In both plots the meta-track
indicates the nes ng level as ground truth. (c) The result of matching the selected states indicates that they seem to
capture nes ng level 4 phrases of variable length.

neighborhood several other occurrences of our hypothesis are covered as well, e.g., the empty paren-

thesis and the full sequence ( 4 4 4 . This observation confirms earlier work that demonstrates

that LSTMs can learn simple context-free grammars (Wiles, 1998, Gers and Schmidhuber, 2001).

5.4.2 Phrase Separation in Language Modeling

Next we consider the case of a real-world natural language model from the perspective of an archi-

tect interested in the structure of the internal states and how they relate to underlying properties. For

this experiment we trained a 2-layer LSTM language model with 650 hidden states on the Penn Tree-

bank (Marcus et al., 1993) following the setup of (Zaremba et al., 2014). While the model is trained

for language modeling, we were interested in seeing if it additionally learned properties about the un-

derlying language structure. To test this, we additionally include linguistic annotations in the visual

analysis from the Penn Treebank. We experimented with including part-of-speech tags, named enti-

ties, and parse structure.

Here we focus on the case of phrase chunking. We annotated the dataset with the gold-standard

phrase chunks provided by the CoNLL 2003 shared task (Tjong Kim Sang and De Meulder, 2003)
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Figure 5.5: Phrase selec ons and match annota ons in the Wall Street Journal. (a) The user selects the phrase a very
marked improvement (turning off a er improvement). The matches found are en rely other noun phrases, and start
with different words. Ground-truth noun phrases are indicated with a sequence of colors: cyan (DET), blue (ADV), violet
(ADJ), red (NOUN). (b) We select a range star ng with has invited. The results are various open verb phrases as
sequence of colors orange (VERB) and blue (ADV). Note that for both examples the model can return matches of varying
lengths.

for a subset of the treebank (Sections 15-18). These include annotations for noun phrases and verb

phrases, along with prepositions and several other less common phrase types.

While running experimental analysis, we found a strong pattern that selecting noun phrases as hy-

potheses leads to almost entirely noun phrase matches. Additionally, we found that selecting verb

phrase prefixes would lead to primarily verb phrase matches. In Figure 5.5 we show two examples of

these selections and matches.

The visualizationhints that themodel has implicitly learned a representation for languagemodeling

that can differentiate between the two types of phrases. While the tool itself cannot confirm or deny

this type of hypothesis, the aim is to provide clues for further analysisWe can check, outside of the tool,

if the model is clearly differentiating between the classes in the phrase dataset. To do this we compute
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Figure 5.6: PCA projec on of the hidden state pa erns (S1) of all mul -word phrasal chunks in the Penn Treebank, as
numerical follow-up to the phrase chunking hypothesis. Red points indicate noun phrases, blue points indicate verb
phrases, other colors indicate remaining phrase types. While trained for language modeling, the model separates out
these two phrase classes in its hidden states.

the setS1 for every noun and verbphrase in the dataset. We thenuse PCAon the vector representation

to generate a two-dimensional embedding for each set. The results are shown in Figure 5.6, which

shows that these on-off patterns are sufficient to partition the noun and verb phrases3.

5.4.3 Musical Chord Progressions

Past work on LSTM structure has emphasized cases where single hidden states are semantically inter-

pretable. We found that with a few exceptions (quotes, brackets, and commas) this was rarely the case.

However, for datasets with more regular long-term structure, single states could be quite meaningful.

As a simple example, we collected a large set of songs with annotated chords for rock and pop songs

3Work by Belinkov et al. (2017b) first showed that even neural machine translation systems successfully
learn syntactic information.
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Figure 5.7: Three examples of single state pa erns in the guitar chord dataset. (a) We see several permuta on of the
very common I - V - vi - IV progression (informally, the “Don’t Stop Believing” progression). (b) We see several pa erns
ending in a variant of the I- vi- IV- V (the 50’s progression). (c) We see two variants of I - V - vi -iii - IV - I (beginning of
the Pachelbel’s Canon progression). Chord progression pa erns are based on http://openmusictheory.com/.

to use as a training dataset, 219k chords in total. We then trained an LSTM language model to predict

the next chord xt+1 in the sequence, conditioned on previous chord symbols (chords are left in their

raw format).

Whenweviewed the results inLSTMViswe found that the regular repeating structure of the chord

progressions is strongly reflected in the hidden states. Certain states will turn on at the beginning of

a standard progression, and remain on through variant-length patterns until a resolution is reached.

In Figure 5.7, we examine three very common general chord progressions in rock and pop music. We

select a prototypical instance of the progression and show a single state that captures the pattern by

remaining on when the progression begins and turning off upon resolution.
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5.5 Long-Term Case Study

Shneiderman and Plaisant (2006) propose strategies for multi-dimensional in-depth long-term case

(MILC) studies to evaluate information visualization tools. They observe that “scaling up by an order

of magnitude in terms of number of users and duration of the observations is clearly beneficial.” We

decided to adopt their core ideas and report onqualitative feedback andquantitative success indicators

after the open-source release of LSTMVis in June 2016.

Wecreated awebpage and a video that introduces the core ideas of LSTMVis atlstm.seas.harvard.

edu. The webpage provides an overview video, links to the code, the online demo, and an opportu-

nity for users to leave comments. To advertise the tool online we followed a social media strategy that

included collecting followers on Twitter, using broadcast media such as Reddit and Hackernews, and

inviting editors of popular machine learning blogs to write guest articles.

The webpage contains a demo system with example datasets that allows us to acquire a large set

of logging data. We noticed that users often try to reproduce the scenarios that are explained in the

online video. To allow users to share insights from their exploratory analysis, we ensured that our

URL parameter string contains all necessary information to replay and share a scenario.

We collected logging information about our webpage using Google Analytics. Within the first 7

days, theweb page received∼5,600 unique users, with 49%of traffic coming through socialmedia and

39% arriving directly. The social media traffic was dominated by channels that we used to advertise the

tool (Twitter 40%, Reddit 26%). To our surprise we also observed substantial traffic from channels

that we did not contact directly (e.g., Sina Weibo 11%, Google+ 9%). After 300 days we recorded

∼19,500 page views with shrinking user traffic from social media (31%). At that point most users

used search (22%) or accessed the webpage directly (39%). Only a small percentage (10%) of users

tried the online demo. Most of these users used the datasets shown in the explanation video and did

not explore further.
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Our open source code release was stable yet simple enough to “...ensure that the tool has a reason-

able level of reliability and support for basic features” (Shneiderman and Plaisant, 2006). For easy

adoption, we provide a detailed documentation and convenience tools to prepare the data for im-

port. We asked students to act as testers for our source code. Based on their feedback we made several

improvements to the installation process. For example, our prototype required NodeJS to resolve

client-side dependencies. By providing the required libraries within our repository we removed the

cumbersome step of installing NodeJS for our target audience. We observe that around 850 program-

mers liked the project (stars on GitHub) and over 200 practitioners copied (forked) the project to

make custom modifications.

Furthermore,weobserve adoptionof the tool for several documenteduse cases. Evermannet.al. (Ev-

ermann et al., 2017) describe the application ofLSTMVis to understand a trainedmodel for a business

process intelligence dataset. Liu et.al. (Liu et al., 2016) use LSTMVis in experiments to investigate lan-

guage variants and vagueness inwebsite privacy policies. We see an increasing interest to apply our tool

for biomedical and genomic data (Ching et al., 2018).

Besides the quantitative observations we also collected qualitative feedback from comments on the

webpage, GitHub tickets (feature requests), and in-person presentations of the prototype. This qual-

itative feedback led us to make several changes to our system that were discussed in Section 5.3.

In retrospective, conducting a long-termuser study benefited the project atmultiple stages. Prepar-

ing the release of the prototype required us to focus strongly on simplicity, usability, and robustness

of our tool. This lead to many small improvements to an internal prototype. The design iterations

we inferred from user feedback strengthen the tool further. We think, that planning a successful long-

term study requires four core ingredients: (1) reach out to your target audience by describing your

approach (webpage, video) and inform them using social media, email, etc. (2) allow users to play

with your tool by setting up a demo server, (3) allow engagement and experimentation with your tool

by providing sufficiently documented, easily adoptable source code, and (4) make it as simple as pos-
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sible for users to give you feedback via discussion forums, reported issues, or in person. During the

study, we found it to be crucial to continuously engage with users and quickly take action based on

their feedback.

5.6 Conclusion

LSTMVis provides an interactive visualization to facilitate data analysis of RNN hidden states. The

tool is based on direct inference where a user selects a range of text to represent a hypothesis and the

tool then matches this selection to other examples in the dataset. The tool easily allows for external

annotations to verify or reject hypothesizes. It only requires a time-series of hidden states, whichmakes

it easy to adopt for a wide range of visual analyses of different datasets and models, and even different

tasks (language modeling, translation etc.).

To demonstrate the use of the model we presented several case studies of applying the tool to dif-

ferent datasets. Releasing the tool and source code online allows us to collect long-term user feedback

that has already led us to make several improvements. In future work, we will explore how the wide

variety of application cases can be adopted – beyond our imagined use cases and user groups. As ex-

ample for such a use case, we got contacted by a highschool student using LSTMVis to learn about

RNN methods.

Another lesson taken from the development of the toolwas the value of developing an intuition for

machine learningmodel behavior. In contrast to the phenotyping example from chapter 4, LSTMVis

allows users to interact with the internal states of a model. That means not only that the tool allows

the testing of multiple hypotheses, it also helps users form these hypotheses by forming an intuition

about the model behavior.

A limitation of LSTMVis is that it tries to explain a model using globally learned rules. It does

not, however, explain predictions. Focusing on the same user type of architects and trainers, we will
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present a tool that assists in the understanding of predictions in Chapter 6.
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6
Debugging Predictions of

Sequence-to-Sequence Models

So far, we have presented two examples ofmethods aiming to understandwhat amodel has learned as a

whole. Building this intuition is crucial to validatewhether the themodel performs as expected, it does

not help when trying to debug model decisions, particularly when the model makes mistakes. This

split between trying to understand themodel or its prediction is commonly seen in the interpretability
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3/29/2018 S2S Attention

http://localhost:8080/client/index.html?in=our%20tool%20helps%20to%20find%20errors%20in%20%20seq2seq%20models%20using%20visual%20analysis%20methods%20.

Start entering some encoder sentence (enter triggers request)...

our tool helps to find errors in  seq2seq models using visual analysis methods .

Enc words:

Attention:

topK:

our tool helps to find errors in seq2seq models using visual analysis methods .

unser werkzeug hil� , fehler in <unk> modellen zu finden , die mit visuellen analysen <unk> .

unser werkzeug hil� , fehler in <unk> modellen zu finden , die mit visuellen analysen der .

unsere instrument dabei dabei fehlern zu der modelle anzuwenden entdecken mit mit mittels visueller <unk> von <unk>

das tool hilfreich dazu abweichungen bei den <unk> einzusetzen suchen die indem visuell der belegen <unk> werden

unserem hilfsmittel ist zu <unk> für form , mit verschaffen mittels mittels visuellen visualisierung auswertung geprägt zu

wir werkzeuge helfen es etwas auf die anhand für geben und um von <unk> analyse zu lernen
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�  and around the world , satellites and warning systems are saving lives in <unk>  areas such as bangladesh .

�  these are the two pictures taken of garment factories in <unk>  province and garment factories in india .

�  i would love to talk about my astronomy , but i suspect that the number of people who are interested in <unk> transfer in <unk>
atmospheres and polarization of light in jupiter &apos;s upper atmosphere are the number of people who &apos;d fit in a bus shelter .

�  if a neutrino had a brain , which it evolved in <unk>  ancestors , it would say that rocks really do consist of empty space .

�  i would love to talk about my astronomy , but i suspect that the number of people who are interested in <unk>  transfer in <unk>
atmospheres and polarization of light in jupiter &apos;s upper atmosphere are the number of people who &apos;d fit in a bus shelter .

�  most of those individuals had spent most of their lives in <unk>  hospitals . this is a long time ago .

�  that &apos;s year by year . this comes from our friends at <unk>

�  i &apos;ll get an esl class in <unk>  learning &quot; it &apos;s raining , it &apos;s pouring . &quot;

�  you send one blessed email to whomever you &apos;re thinking of at <unk>

�  she <unk> for jobs down in <unk>  province in the south .

�  science columnist lee <unk> describes a remarkable project at <unk>  divide , antarctica , where a hardy team are drilling into <unk> ice to
extract vital data on our changing climate .

�  that technology will be used on <unk>  animals .

�  i work in <unk>  homes , largely .

�  so for example , there was one study that was done in a population of <unk>  jews in new york city .

�  in this manner , the world bank has now <unk> 30,000 project activities in <unk>  countries , and donors are using a common platform to
map all their projects .

�  now compassion , when it enters the news , too o�en comes in the form of <unk>  feature pieces or <unk> about heroic people you could
never be like or happy endings or examples of self-sacrifice that would seem to be too good to be true most of the time

�  and they caught a couple of my guys who had hidden cameras in <unk>  bags .

�  and with these keys , they may have been able to get inside <unk>  &apos;s systems , to see and hear everything , and maybe even infect
some of them .

�  on that table you can see 48 hours &apos; worth of <unk>  goods from passengers entering in to the united states .

�  so these are consumers organizing , <unk> their resources to <unk>  companies to do good .

�  this is not the story of how you get shelf space at <unk>  marcus .

�  tony in chicago has been taking on growing experiments , like lots of other window farmers , and he &apos;s been able to get his strawberries
to fruit for nine months of the year in <unk>  conditions by simply changing out the organic nutrients .

�  and the important point about this is that it &apos;s the earliest study in <unk>  in mathematics .

�  so the first time i worked with colors was by making these <unk> of <unk>  <unk> .

�  who is going to allow a bunch of little girls , dressed up — &quot; &quot; — to come inside a jail and dance with their <unk> in <unk>  suits ?
&quot;

our tool helps to find errors in seq2seq models using visual analysis

3/29/2018 S2S Attention

http://localhost:8080/client/index.html?in=our%20tool%20helps%20to%20find%20errors%20in%20%20seq2seq%20models%20using%20visual%20analysis%20methods%20.

Start entering some encoder sentence (enter triggers request)...

our tool helps to find errors in  seq2seq models using visual analysis methods .

Enc words:

Attention:

topK:

our tool helps to find errors in seq2seq models using visual analysis methods .

unser werkzeug hil� , fehler in <unk> modellen zu finden mittels visueller analysen .

unser werkzeug hil� , fehler in <unk> modellen zu finden , visueller analysen .

unsere instrument dabei dabei fehlern zu der modelle anzuwenden entdecken mit der <unk> von

das tool hilfreich dazu abweichungen bei den <unk> einzusetzen suchen die visuellen auswertung ,

unserem hilfsmittel ist zu <unk> für form , mit verschaffen mittels des analyse der

wir werkzeuge helfen es etwas auf die anhand für geben und <unk> darstellungen des
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Figure 6.1: Example of Seq2Seq-Vis. In the transla on view (le ), the source sequence “our tool helps to find errors in
seq2seq models using visual analysis methods.” is translated into a German sentence. The word “seq2seq” has correct
a en on between encoder and decoder (red highlight) but is not part of the language dic onary. When inves ga ng
the encoder neighborhoods (right), the user sees that “seq2seq” is close to other unknown words “⟨unk⟩”. The bu ons
enable user interac ons for deeper analysis.

literature, as we described in Chapter 3.2. However, while the aim differs, we can apply the same

insight that interaction builds intuition to this problem.

In this work we focus on attention-based sequence-to-sequence models (seq2seq, Sutskever et al.,

2014, Bahdanau et al., 2015). Seq2seq models have shown state-of-the-art performance in a broad

range of generation tasks, for example in machine translation, image captioning, and summarization.

Recent results show that these models exhibit human-level performance in machine translation for

certain important domains (Wu et al., 2016, Hassan Awadalla et al., 2018). Seq2seq models are pow-

erful because they provide an effective supervised approach for processing and predicting sequences

without requiring manual specification of the relationships between source and target sequences. Us-

ing a single model, these systems learn to do reordering, transformation, compression, or expansion

of a source sequence to an output target sequence.

However, similar to the other models we have investigated so far, Seq2seq models act as black-boxes

during prediction, making it difficult to track the source of mistakes. The high-dimensional internal

representations make it difficult to analyze the model as it transforms the data. While this property
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is shared across deep learning, mistakes involving language are often very apparent to human read-

ers. For instance, a widely publicized incident resulted from a seq2seq translation system mistakenly

translating “good morning” into “attack them” leading to a wrongful arrest (Hern, 2017). Common

but worrying failures in seq2seq models include machine translation systems greatly mistranslating a

sentence, image captioning systems yielding an incorrect caption, or speech recognition systems pro-

ducing an incorrect transcript.

Ideally, model developers would understand and trust the results of their systems, but currently,

this goal is out of reach. We, therefore, contribute to the crucial challenge of better surfacing the

mistakes of seq2seq systems in a general and reproducible way. We propose Seq2Seq-Vis, a visual

analytics tool provides support for the following three goals:

• ExamineModel Decisions: allow users to understand, describe, and externalize model errors

for each stage of the seq2seq pipeline.

• Connect Decisions to Samples: describe the origin of a seq2seq model’s decisions by relating

internal states to relevant training samples.

• Test Alternative Decisions: facilitate model interventions by making it easy to manipulate

of model internals and conduct ”what if” explorations.

The full system is shown in Figure 6.1 (or larger in Figure 6.7). It integrates visualizations for the

components of the model (Fig 6.1 left) with internal representations from specific examples (Fig 6.1

middle) and nearest-neighbor lookups over a large corpus of precomputed examples (Fig 6.1 right).

The source code, a demo instance, and a descriptive webpage are available at http://seq2seq-vis.io

Throughout this work, we consider the running example of automatic translation of one sequence

x1:S in one language to a sequence y1:T in another language. Recall the stages of seq2seq models

from Chapter 2.3.5, also shown in Figure 6.2: An encoder (S1) encodes the word embedding xs into

a contextualizedhidden representationh(S)s . Adecoder (S2) generates the representationsh(T )
1:t for the
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context state
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predictions (S4) 
beam search (S5)

Figure 6.2: Five stages in transla ng a source to target sequence: (S1) encoding the source sequence into latent vectors,
(S2) decoding to generate target latent vectors, (S3) a end between encoder and decoder, (S4) predict word probabili-
es at each me step, and (S5) search for a best complete transla on (beam search).

sequence of generated target words y1:t. The attention (S3) computes an alignment between a target

step and all source tokens. We refer to the attention weight from decoding step t to a source word

xs as at,s. The prediction step (S4) computes a distribution p(yt+1|x1:S , y1:t) over the vocabulary

of the target language. Finally, the beam search (S5) is used to approximate the optimal sequence of

tokens for a translation by maintaining a fringe of the top K hypotheses until all have terminated by

generating the stop token.

Each stage of the process is crucial for effective translation, and it is hard to separate them. However,

the model does preserve some separations of concerns. The decoder (S2) and encoder (S1) primarily

work with their respective language, and manage the change in hidden representations over time. At-

tention (S3) provides a link between the two representations and connects them during training. Pre-
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Figure 6.3: An overview of the Seq2seq-Vis interface for the case study.

diction (S4) combines the current decoder state with the information moving through the attention.

Finally, search (S5) combines these with a global score table. These five stages provide the foundation

for our visual analytics system.

6.1 Motivating Case Study: Debugging Translation

Tomotivate the need for a neural debugger, we present a representative case study. Further case studies

are discussed in section 6.4. This case study involves a model trainer (see Section 3.1) named Beth who

is building a German-to-English translation model. The model is trained on the small-sized IWSLT

’14 dataset (Mauro et al., 2012) with 200,000 examples and thus makes frequent mistakes.

Beth observes that a specific examplewasmistranslated in a production setting. She finds the source

sentence: Die längsten Reisen fangen an, wenn es auf den Straßen dunkel wird.1 This sentence should

have been translated to: The longest journeys begin, when it gets dark in the streets. She notices that

1The closing quote of the book ‘Kant’ from German author Jörg Fauser, who is attributed as being a fore-
runner of German underground literature.

94



3/27/2018 S2S Attention

http://localhost:8080/client/index.html?in=die%20l%C3%A4ngsten%20reisen%20fangen%20an%20,%20wenn%20es%20auf%20den%20stra%C3%9Fen%20dunkel%20wird%20.

Start entering some encoder sentence (enter triggers request)...

die längsten reisen fangen an , wenn es auf den straßen dunkel wird .

Enc words:

Attention:

topK:

die längsten reisen fangen an , wenn es auf den straßen dunkel wird .

the longest travel begins when it gets to the streets .

the longest travel when when it &apos;s to the streets .

and oldest trips will if they gets dark a roads in

so tallest journeys begins , the becomes buried shore road of

well russians travels begin as there grows into heaven street ,

you icons journey start in this comes in its city to

pivot

g change:

word attn

hcompare:

sentence

swap:

�

<s>
the
and
so
well

longest
the

travel
longest

when
begins

begin

will

it
when

when

start

it

it

when

&apos;s
gets
&apos;s

it

going
to
going
&apos;s

gets

to
the
to
going

to

streets

to

the

.
be

go
streets

buried

in

to
.

in
on
the

the

the
the
streets

streets

streets
streets
.
.
in

.

.

the

show: edges  nodes

die

längsten

reisen
fangen

an
,

wenn

es

auf

den

straßen

dunkel

wird

.

show: src tgt  highlight: -1 0 +1

�  schwarze löcher sind ein dunkles  etwas vor einem dunklen himmel .

�  also gehen sie tief in die minen , um eine stille der umwelt zu finden , die es
sie hören lässt , wenn ein dunkles  <unk> ihren detektor tri� .

�  aber auch , wenn das schwarze loch von außen dunkel  ist , ist es in
seinem inneren nicht dunkel , denn alles licht der galaxis könnte hinter uns
einfallen .

�  das gebetbuch ist dunkel auf beiden bildern und kommt dunkel  heraus .

�  &#91; &quot; gelb &quot; &#93; db  : rot . publikum : gelb .

�  &#91; &quot; blau &quot; &#93; db  : gelb .

�  außerdem verursacht das <unk> im wagen das , was wir eine <unk>
nennen , wodurch es dunkler  wird .

�  &#91; &quot; pferd &quot; &#93; db  : gelb . publikum : gelb .

�  unser bewusstsein über diese sache wird extrem hell und lebha� , und
alles andere wird wie dunkel  .

�  das ist mcmurdo selbst . ungefähr 1.000 menschen arbeiten im <unk> hier ,
und ca. 200 im winter , wenn es sechs monate lang völlig dunkel  ist .

�  wenn wir also die form dieser <unk> wüssten , sollten wir imstande sein ,
diese merkmale zu berechnen , die menge dunkler  materie zu berechnen .

�  aber es gab zeugen ; überlebende im dunkel  .

�  ich lebe kreise von licht und dunkel  .

�  das gebetbuch ist dunkel  auf beiden bildern und kommt dunkel heraus .
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�  schwarze löcher sind ein dunkles  etwas vor einem dunklen himmel .

�  also gehen sie tief in die minen , um eine stille der umwelt zu finden , die es
sie hören lässt , wenn ein dunkles  <unk> ihren detektor tri� .

�  aber auch , wenn das schwarze loch von außen dunkel  ist , ist es in
seinem inneren nicht dunkel , denn alles licht der galaxis könnte hinter uns
einfallen .

�  das gebetbuch ist dunkel auf beiden bildern und kommt dunkel  heraus .

�  &#91; &quot; gelb &quot; &#93; db  : rot . publikum : gelb .

�  &#91; &quot; blau &quot; &#93; db  : gelb .

�  außerdem verursacht das <unk> im wagen das , was wir eine <unk>
nennen , wodurch es dunkler  wird .

�  &#91; &quot; pferd &quot; &#93; db  : gelb . publikum : gelb .

�  unser bewusstsein über diese sache wird extrem hell und lebha� , und
alles andere wird wie dunkel  .

�  das ist mcmurdo selbst . ungefähr 1.000 menschen arbeiten im <unk> hier ,
und ca. 200 im winter , wenn es sechs monate lang völlig dunkel  ist .

�  wenn wir also die form dieser <unk> wüssten , sollten wir imstande sein ,
diese merkmale zu berechnen , die menge dunkler  materie zu berechnen .

�  aber es gab zeugen ; überlebende im dunkel  .

�  ich lebe kreise von licht und dunkel  .

�  das gebetbuch ist dunkel  auf beiden bildern und kommt dunkel heraus .

die längsten reisen fangen an , wenn es auf

Figure 6.4: Hypothesis: Encoder (S1) Error – nearest neighbors of encoder state for dunkel.

the model produces the mistranslation: The longest journey begins, when it gets to the streets. Fig-

ure 6.3(E/D) shows the tokenized input sentence in blue and the corresponding translation of the

model in yellow (on the top). The user observes that the model does not translate the word dunkel

into dark.

This mistake exemplifies several goals that motivated the development of Seq2Seq-Vis. The user

would like to examine the system’s decisions, connect to training examples, and test possible changes.

These goals apply to all five model stages: encoder, decoder, attention, prediction, and search.

Hypothesis: Encoder (S1) Error? Following the same approach as with LSTMVis, Seq2Seq-Vis

lets the user examine examples with similar encoder states. Throughout, we will use the term neigh-

borhood to refer to the twenty closest states in vector space from training data. Seq2Seq-Vis displays

the nearest neighbor sentences for a specific encoder state as red highlights in a list of training set ex-

amples. Figure 6.4 shows that the nearest neighbors for dunkel match similar uses of the word. The

majority seem to express variations of dunkel. The few exceptions, e.g., db, are artifacts that can mo-

tivate corrections of the training data or trigger further investigation. Overall, the encoder seems to

perform well in this case.

Hypothesis: Decoder (S2) Error? Similarly, Beth can apply Seq2Seq-Vis to investigate the neigh-
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�  <s> this means we all benefit when another country gets rich  . </s>

�  <s> the prayer book is dark in both images and it comes out dark  . </s>

�  <s> now black holes are dark  against a dark sky . </s>

�  <s> furthermore , the roof of the car is causing what we call a shadow
cloud inside the car which is making it darker  . </s>

�  <s> the prayer book is dark  in both images and it comes out dark . </s>

�  <s> i live cycles of light and darkness  . </s>

�  <s> this is mcmurdo itself . about a thousand people work here in summer
, and about 200 in winter when it &apos;s completely dark  for six months .
</s>

�  <s> this is a tumor : dark  , gray , ominous mass growing inside a brain .
</s>

�  <s> but even though the black hole is dark  from the outside , it &apos;s
not dark on the inside , because all of the light from the galaxy can fall in
behind us . </s>

�  <s> <unk> adapted with layers of fat . sea lions got sleek  . </s>

�  <s> the archimedes text is dark  in one image and bright in another . </s>

�  <s> then things get tense  . </s>

�  <s> under those conditions , the foxo protein in blue has gone into the
nucleus  -- that little compartment there in the middle of the cell -- and it

&apos;s sitting down on a gene binding to it . </s>

�  <s> and it was very peculiar , because it was dark  out , but she was <unk>

the longest travel begins when it gets to the

S2

Figure 6.5: Hypothesis: Decoder (S2) Error – nearest neighbors of decoder state for gets and streets, which are close in
projec on space.

borhood of decoder states produced at times t and t + 1 (Figure 6.5). In addition to the neighbor

list, it gives a projection view that depicts all decoder states for the current translation and all their

neighbors in a 2D plane. The analyst observes that the decoder states produced by gets and streets are

in proximity and share neighbors. Since these states are indicative for the next word we can switch the

highlight one text position to the right (by clicking the +1 button) and observe that the decoder states

at gets and streets support producing dark, darker, or darkness. Thus, the decoder state does not seem

very likely as the cause of the error.

Hypothesis: Attention (S3) Error? Since both encoder and decoder are working as expected, an-

other possible issue is that the attention may not focus on the corresponding source token dunkel.

The previous test revealed that well-supported positions for adding dark are after gets or streets. This

matches human intuition, as we can imagine the following sentences which are valid translations: The

96



longest travels begin when it gets dark in the streets. or The longest travels begin when it gets to the streets

turning dark. In Figure 6.3(S3) Beth can observe that the highlighted connection following get to the

correct next word dunkel is very strong. The connection width indicates that the attention weight is

very high with the correct word. Therefore, Beth assumes that the attention is well set for predicting

dark in this position. The hypothesis for an error in S3 can be rejected.

Hypothesis: Prediction (S4) Error? The combination of decoder state and attention is used to

compute the probability of the next word. It may be that an error occurs in this decision, leading to a

poor probability of the word dark. The tool shows the most likely next words and their probabilities

in Figure 6.3(S4). Here, our analyst can see that the model mistakenly assigns a higher probability

to to than dark. However, both options are very close in probability, indicating that the model is

quite uncertain and almost equally split between the two choices. These local mistakes should be

automatically fixed by the beam search, because the correct choice dark leads to a globally more likely

sentence.

Hypothesis: Search (S5) Error? Having eliminated all other possible issues, the problem is likely

to be a search error. Beth can investigate the entire beam search tree in Figure 6.3(S5), which shows

the topK considered options at each prediction step. In this case, the analyst finds that dark is never

considered within the search. Since the previous test showed that to is only minimally more likely than

dark, a largerK would probably have lead to the model considering dark as the next best option. We

therefore conclude that this local bottleneck of a too narrow beam search is the most likely error case.

The analyst has identified a search error, where the approximations made by beam search cut off the

better global option in favor of a worse local choice.

Exploring Solutions. When observing the K-best predictions for the position of to, Beth sees that

dark and to are close in probability (Figure 6.3(S4)). To investigate whether the model would produce

the correct answer if it had considereddark, Seq2Seq-Vis allowsBeth to evaluate a case-specificfix. The

analyst can test this counterfactual, what would have happened if she had forced the translation to use
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�  schwarze löcher sind ein dunkles  etwas vor einem dunklen himmel .

�  also gehen sie tief in die minen , um eine stille der umwelt zu finden , die es sie hören lässt , wenn ein dunkles  <unk> ihren detektor tri� .

�  aber auch , wenn das schwarze loch von außen dunkel  ist , ist es in seinem inneren nicht dunkel , denn alles licht der galaxis könnte hinter uns einfallen .

�  das gebetbuch ist dunkel auf beiden bildern und kommt dunkel  heraus .

�  &#91; &quot; gelb &quot; &#93; db  : rot . publikum : gelb .

�  &#91; &quot; blau &quot; &#93; db  : gelb .

�  außerdem verursacht das <unk> im wagen das , was wir eine <unk> nennen , wodurch es dunkler  wird .

�  &#91; &quot; pferd &quot; &#93; db  : gelb . publikum : gelb .

�  unser bewusstsein über diese sache wird extrem hell und lebha� , und alles andere wird wie dunkel  .

�  das ist mcmurdo selbst . ungefähr 1.000 menschen arbeiten im <unk> hier , und ca. 200 im winter , wenn es sechs monate lang völlig dunkel  ist .

�  wenn wir also die form dieser <unk> wüssten , sollten wir imstande sein , diese merkmale zu berechnen , die menge dunkler  materie zu berechnen .

�  aber es gab zeugen ; überlebende im dunkel  .

�  ich lebe kreise von licht und dunkel  .

�  das gebetbuch ist dunkel  auf beiden bildern und kommt dunkel heraus .

�  das war sehr merkwürdig , denn draussen war es dunkel  , aber hinter ihr war fluoreszierendes licht und sie benahm sich sehr wie auf einer bühne , und ich konnte
nicht erkennen , warum sie es tat .

�  als erstes muss man beachten , dass es gegenden auf dieser welt gibt , die wegen mangelnder aufmerksamkeit im dunkeln  stehen .

�  und so haben wir entdeckt , dass es eine unendliche <unk> an gehäkelten hyperbolischen  wesen gibt .

�  es gibt eine gruppe in deutschland die beginnen augen zu konstruieren damit blinde hell und dunkel  sehen können .

�  wir vergrößern das blickfeld , wir zoomen raus , durch eine nukleare pore , welche der zugang zu dem teil , der die dna beherbergt , ist und nukleus  genannt wird .

�  der <unk> ist dunkel  auf dem einen und hell auf dem anderen bild .

P

Figure 6.6: Tes ng a fix – by clicking on the correct word dark in the predicted top-K, the beam search is forced on a
specific path (P) which leads to the correct predic on.

dark at this critical position? By clicking on dark she can produce this probe (shown in Figure 6.6),

which yields the correct translation. The user can now describe the most likely cause of error (search

error) and a local fix to the problem (forced search to include dark). Beth can now add this case to a

list of well-described bugs for the model and later consider a global permanent fix.

6.2 Goals and Tasks

We now step back from this specific instance and consider a common deployment cycle for a deep

learning model such as seq2seq. First, a model is trained on a task with a possibly new data set, and

then evaluated with a standard metric. The model performs well in aggregate and the stakeholders

decide to deploy it. However, for a certain subset of examples there exist non-trivial failures. These

may be noticed by users, or, in the case of translation, by post-editors who correct the output of the

system. While the model itself is still useful, these examples might be significantly problematic as to

cause alarm.

Although these failures can occur in any system, this issue was much less problematic in previous

98



generations of AI systems. For instance when using rule-based techniques, a user can explore the

provenance of a decision through rules activated for a given output. If there is a mistake in the system,

an analyst can 1) identify which rule misfired, 2) see which previous examples motivated the inclusion

of the rule, and 3) experiment with alternative instances to confirm this behavior.

Ideally, a systemcouldprovideboth functionalities: the highperformanceof deep learningwith the

ability to interactively spot issues and explore alternatives. However, the current architecture of most

neural networks makes it more challenging to examine decisions of the model and locate problematic

cases. Our work tackles the following challenges and domain goals for seq2seq models analogous to

the three steps in rule-based systems:

Goal G1 – Examine Model Decisions: It is first important to examine the model’s decision chain

in order to track down the error’s root cause. Seq2seq models make decision through several stages.

While it has proven difficult to provide robust examination in general-purpose neural networks, there

has been success for specific decision components. For example, the attention stage (S3) has proven

specifically useful for inspection (Xu et al., 2015, Bahdanau et al., 2015, Lee et al., 2017). Our first

goal is to develop interactive visual interfaces that help users understand the model’s components,

their relationships, and pinpoint sources of error.

Goal G2 – Connect Decisions to Samples from Training Data: Once a model makes a particular

decision, a user should be able to trace what factors influenced this decision. While it is difficult to

provide specific reasoning about the many factors that led to a decision in a trained model, we hope to

provide other means of analysis. In particular, we consider the approach of mapping example states

to those from previous runs of the model. For instance, the training data defines the world view of

a model and therefore influences its learned decisions (Koh and Liang, 2017). The goal is to utilize

(past) samples from training data as a proxy to better understand the decision made on the example in

question.

Goal G3 – Test Alternative Decisions: Ultimately, though, the goal of the user is to improve the
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�  ich möchte ihnen heute  morgen ein paar geschichten erzählen und über ein anderes
afrika sprechen .

<s> what i want to do this morning is share with you a couple of stories and talk about
a different africa . </s>

�  ich möchte heute  morgen ein wenig darüber sprechen , was passiert , wenn wir uns
von design in richtung eines design-thinking bewegen .

<s> i &apos;d like to talk a little bit this morning about what happens if we move from
design to design thinking . </s>

�  über diese beiden aspekte werde ich heute  morgen etwas berichten .

<s> and i &apos;m going to say a few words about each one this morning . </s>

�  mein name ist ursus wehrli , und ich möchte ihnen heute  morgen gerne von meinem
projekt , kunst aufräumen , erzählen .

<s> my name is ursus wehrli , and i would like to talk to you this morning about my
project , tidying up art . </s>

�  eine neue theorie ist jetzt , und ihr habt sie bereits heute  morgen von dr. insel
gehört , dass psychische erkrankungen störungen der neuralen verbindungen sind , die
einfluss auf gefühle , laune und <unk> haben .

<s> now , an emerging view that you also heard about from dr. insel this morning , is
that psychiatric disorders are actually disturbances of neural circuits that mediate
emotion , mood and affect . </s>

�  alle 30 sekunden stirbt irgendwo auf der welt ein kind an malaria und paul levy
sprach heute  morgen über die metapher von der <unk> , die in den vereinigten staaten
abstürzt .

Translation View (a)

Neighborhood View (b)

(c) Attention Vis

(d) TopK List

(e) Beamsearch Tree

(f) Trajectory Pictograms

(g) left: State Trajecories
(h) right: Neighbor List

Figure 6.7: Overview of Seq2Seq-Vis: The two main views (a) Transla on View and (b) Neighborhood View facilitate
different modes of analysis. Transla on View provides (c) visualiza ons for a en on, (d) the top k word predic ons for
each me step, and (e) the beam search tree. The Neighborhood View goes deeper into what the model has learned by
providing (f,g) a projec on of state trajectories and (h) a list of nearest neighbors for a specific model state.

model’s performance and robustness. While the current state-of-the art for diagnosing and improving

deep neural network models is still in an early stage (Karpathy et al., 2015, Smilkov et al., 2017a, Li

et al., 2016b, Kahng et al., 2018), our goal is to allow the user to test specific interventions. We aim to

let the user investigate causal effects of changing parts of the model the let users ask what if specific

intermittent outputs of a model changed.

Our motivating case study (section 6.1) follows these goals: First, the user defines five hypotheses

for causes of error and tests them by examining the model’s decisions (G1). Some of these decisions

(for S1, S2) are represented in the model only as latent high-dimensional vectors. To make these parts

tangible for the user, she connects them to representative neighbors from the training data (G2). Fi-

nally, by probing alternatives in the beam search (G3) she finds a temporary alternative that helps her

to formulate a better solution.
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We use these goals to compile a set of visualization and interaction tasks for Seq2Seq-Vis. The

mapping of these tasks to goals is indicated by square brackets:

Task T1 - Create common visual encodings of all five model stages to allow a user to examine the

learned connections between these modules. [G1]

Task T2 - Visualize state progression of latent vector sequences over time to allow for high-level

view of the learned representations. [G1]

Task T3 - Explore generated latent vectors and their nearest neighbors by querying a large

database of training examples to facilitate error identification and training adjustment. [G2]

Task T4 - Generate sensible alternative decisions for different stages of the model and com-

pare them to ease model exploration and compare possible corrections. [G1, G3]

Task T5 - Create a general and coherent interface to utilize a similar front-end formany sequence-

to-sequence problems such as translation, summary, and generation. [G1,G2,G3]

In the following section, we will match these tasks and goals to design decisions for Seq2Seq-Vis.

6.3 Design of Seq2Seq-Vis

The design process of Seq2Seq-Vis applied the lessons learned during the development of LST-

MVis. We followed an iterative design process with frequent discussions between experts in machine

learning and visualization. In regular meetings we evaluated a series of low-fidelity prototypes and

tested them for usability. The design presented in this section combines the prevailing ideas into a

comprehensive tool.

The tool also follows the same strategy of select and match. This strategy is embodied in the two

main views that facilitate those modes: In the upper part, the translation view provides a visual en-

coding for each of the model stages and fosters understanding and comparison tasks. In the lower

part, the neighborhood view enables deep analysis based on neighborhoods of training data. Figure 6.7
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shows the complete tool.

Translation View In the translation view (Figure 6.7a), each functional stage of the seq2seq

model is mapped to a visual encoding (T1, T2, G1). These encodings generalize the strategies that

were taken by Olah and Carter (2016) and Le et al. (2012). In Attention Vis (Figure 6.7c), the encoder

words are shown in blue, the decoder words in yellow, and the attention is shown through weighted

bipartite connections. To reduce visual clutter the attention graph is pruned. For each decoder step

all edges are excluded that fall into the lower quartile of the attention probability distribution.

Right below the yellow decoder words, the top K predictions (S4 of model) for each time step

are shown (Figure 6.7d). Each possible prediction encodes information about its probability in the

underlying bar chart, as well as an indication if it was chosen for the final output (yellow highlight).

In the bottom part of the translation view, a tree visualization shows the hypotheses from the beam

search stage (Figure 6.7e). The most probable hypothesis, which results in the final translation sen-

tence, is highlighted. Several interactions can be triggered from the translation view.

Neighborhood View The neighborhood view (Figure 6.7b) connects at model decisions to sim-

ilar examples (T2, T3, G1, G2). Seq2seq models produce high-dimensional vectors at each stage, e.g.,

encoder states, decoder states, or context states. It is difficult to interpret these vectors directly. How-

ever, we can estimate their meaning by looking at examples that produces similar vectors. To enable

this comparison, we precompute the hidden states of a large set of example sentences (we use 50k sen-

tences from the training set). For each state produced by the model on a given example, Seq2Seq-Vis

searches for nearest neighbors from this large subset of precomputed states. These nearest neighbors

are input to the state trajectories (Figure 6.7g) and to the neighbor list (Figure 6.7h).

The state trajectories show the changing internal hidden state of the model with the goal of facili-

tating task T2. This view encodes the dynamics of a model as a continuous trajectory. First, the set for
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all states and their closest neighbors are projected using a non-linear algorithm, such as t-SNE (Maaten

and Hinton, 2008), non-metric MDS (Kruskal, 1964), or a custom projection (see section 6.4). This

gives a 2D positioning for each vector. We use these positions to represent each encoder/decoder se-

quence as a trace connecting its vectors. See Figure 6.7g for an example of a trace representing the

encoder states for wir wollen heute mal richtig spass haben.

In the projection, the nearest neighbors to each vector are shown as nearby dots. When hovering

over a vector fromthe input, the relatednearest neighbor counterparts are highlighted and a temporary

red line connects them. For vectors with many connections (high centrality), we reduce visual clutter

by computing a concave hull for all related neighbors and highlight the related dots within the hull.

Furthermore, we set the radius of each neighbor dot to be dependent onhowmany original states refer

to it. For example, if three states from a decoder sequence have one common neighbor, the neighbor’s

radius is set to∼ 2.5 (we use a r(x) =
√
2xmapping with x being number of common neighbors).

The state trajectories can be quite long. To ease understanding, we render a view showing states

in their local neighborhood as a series of trajectory pictograms (Figure 6.7f). Each little window is a

cut-out from the projection view, derived from applying a regular grid on top of the projection plane.

Each pictogram shows only the cut-out region in which the respective vector can be found.

Clicking on anyprojected vectorwill show theneighbor list on the right side of the view. Theneigh-

bor list shows the actual sentences corresponding to the neighbor points. Specifically, the neighbor

list shows all the nearest neighbors for the selected point with the original sequence pair. The source

or target position in the sequence that matches is highlighted in red. The user can facet the list by

filtering only to show source (blue) or target (yellow) sequences. She can also offset the text highlight

by−1 or+1 to see alignment for preceding or succeeding word positions (see Figure 6.5).
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Figure 6.8: To re-direct a en on in Seq2Seq-Vis, the user first observes a split of a en on between the input 8 and
9 for conver ng the last digits of a year in a date conversion model. She can (a) select a en on mode, (b) select the
decoder word, (c) click on the preferred encoder word, (d) apply the a en on change, and (e) see the models reac on.

6.3.1 Interacting With Examples

Seq2Seq-Vis allows multiple ways to interact with it’s different parts to facilitate analysis of the

model. In order to gain an intuition into the model behavior and to test potential fixes, the inter-

face needs to facilitate multiple different interactions.

One such interaction is to modify the model directly, for instance, by altering attention weights

(S3 in model). For this step, Beth can select a target word for which attention should be modified.

By repeatedly clicking on encoder words, she gives more weights to these encoder words. Figure 6.8

shows how the attention can be modified for an example. After hitting apply attn, the attention is

applied for this position, overwriting the original attention distribution.

Beth can further specify direct changes to either the source or the target. The user can trigger the

changes by using themanual compare button and enter a new source or a new target sentence. When

the source is changed, a new full translation is triggered. If the target is changed, a prefix decode is

triggered. That means that the current prefix y1, . . . , yt is fixed during the beam search which then
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Figure 6.9: Design variants for addi onal token informa on: (a) progression of hidden states, (b) density of neighbor-
hoods, or (c) topK predic ons as heatmap.

looks for the best sequence

ŷ = arg max
y∈Y

p(y|x, y1, . . . , yt).

Alternatively, as demonstrated in the use case, Beth can select the word from the topK predictions

(Figure 6.7d) that seems to be the best next word. By clicking on one of these words, a prefix decode

is triggered as described above.

6.3.2 Design Iterations

We considered several different variants for both main views of the system. For the translation view,

we considered incorporating more state information directly into the encoding. Figure 6.9 shows it-

erations for adding per-word information around encoder and decoder. Similar to LSTMVis, the

hidden state line charts show progression along encoder and decoder hidden states (Figure 6.9a). Do-

main scientists rejected this as toonoisy for the given domain goals. In a later iteration the visualization

experts proposed to indicate the closeness of the nearest neighbors with a simple histogram-like en-
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coding (Figure 6.9b). This information did not help to formulate hypotheses and it failed to reveal a

lot of variance. The next design focused on incorporating language features rather than latent vectors.

It showed for each time step of the decoder the top K predicted words being produced as if there

was only the top beam evaluated until then. In the final iteration, the only change was to change the

indication of probability from a heatmap to a length-based encoding (Figure 6.7d).

These iterations show that, while some visual encoding work for one use case, not all insights can

be directly transferred. This further reinforces the need to develop the the eventual users of a tool and

to use their feedback to improve the system.

6.4 Use Cases

We demonstrate the application of Seq2Seq-Vis and how it helps to generate insights using exam-

ples from a toy date conversion problem, abstractive summarization, and machine translation (sec-

tion 6.1).

Date Conversion. Seq2seq models can be difficult to build and debug even for simple problems. A

common test case used to check whether a model is implemented correctly is to learn a well-specified

deterministic task. Here we consider the use case of converting various date formats to the unified

format YEAR-MONTH-DAY. For example, the source March 25, 2000 should be converted to the

target 2000-03-25. While this problem is much simpler than language translation, it tests the different

components of the system. Specifically, the encoder (S1) must learn to identify different months, the

attention (S3) must learn to reorder between the source and the target, and the decoder (S2) must

express the source word in a numeric format.

Seq2Seq-Vis provides tools for examining these different stages of the model. Figure 6.10 shows an

example, where the user, following Goal 3, employs a comparison between two different translations,

one starting with March and the other with May. These two translations are nearly identical, except
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Figure 6.10: Comparing transla ons for a date conversion model. The input sequencesMarch 21, 2000 and May 21,
2000 are only different by some le ers. The a en on (top) for predic ng the correct months 3 and 5 is focused on this
difference (y vs. rc). The trajectory view (bo om le ) shows this difference along the progression of encoder states.
The neighborhood list (bo om right) indicates that a er input ofM a the model is s ll undecided.

one yields the month 3 and the other 5. Following Goal 1, the user might want to examine the models

decisions. The upper translation view provides a way to compare between the attention on the two

inputs. The red highlighted connections indicate that the first sentence attention focuses on r cwheres

the second focuses on y. These characters are used by the model to distinguish the two months since it

cannot useMa. The user can also observe how the encoder learns to use these letters. The trajectory

view compares the encoder states of sentence 1 and sentence 2. Here we use a custom projection,

where the y-axis is the relative position of a word in a sentence and the x-axis is a 1-d projection of the
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vector. This reveals that the two trajectories are similar before and after these characters, but diverge

significantly around r and c. Finally, following Goal 2, the user can connect these decisions back to the

training data. On the right, she can see the nearest neighbors around the letter a inMa y (highlighted

in red). Interestingly, the set of nearest neighbors is almost equally split between examples of M a y

andMa r c h, indicating that at this stage of decoding the model is preserving its uncertainty between

the two months.

Abstractive Summarization. For our seconduse casewe apply the tool to a summarizationproblem.

Recently, researchers have developed methods for abstractive text summarization that learn how to

produce a shorter summarized version of a text passage. Seq2seq models are commonly used in this

framework (Rush et al., 2015,Nallapati et al., 2016b,Paulus et al., 2018, See et al., 2017). In abstractive

summarization, the target passage may not contain the same phrasing as the original. Instead, the

model learns to paraphrase and alter the wording in the process of summarization.

Studying how paraphrasing happens in seq2seq systems is a core research question in this area.

Rush et al. (2015) describe a system using the Gigaword data set (3.8M sentences). They study the

example source sentence russian defense minister ivanov called sunday for the creation of a joint front

for combating global terrorism to produce a summary russia calls for joint front against terrorism. Here

russia compresses the phrase russian defense minister ivanov and against paraphrases for combating.

To replicate this use case we consider a user Bob analyzing this sentence. In particular, he is inter-

ested in understanding how the model selects the length and the level of abstraction. Bob can analyze

this in the context of Goal 3, testing alternatives predictions of the model, in particular targeting Stage

4. As discussed in Sect 6.3, Seq2Seq-Vis shows the top K predictions at each time step. When the

user clicks on a prediction, the system will produce a sentence that incorporates this prediction. Each

choice is “locked” so that further alterations can be made.

Figure 6.11 shows the source input to this model. We can see four different summaries that the

model produces based on different word choices. Interestingly, specific local choices do have a sig-
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Figure 6.11: Use case of abstrac ve summariza on. The input sentence russian defense minister ivanov called sunday for
the crea on of a joint front for comba ng global terrorism can be summarized in different ways. The yellow boxes indi-
cate alterna ve transla ons for different prefix decode se ngs. Top: the unconstrained abstrac on; middle: changing
predic on from for to on leads to automa c inser on of on world leaders to stay gramma cally correct; bo om le :
changing the first word from russian to moscow or russia compresses the sentence even more while retaining its mean-
ing.

nificant impact on length, ranging from five to thirteen words. By switching from for to on, Bob can

lead the decoder to insert an additional phrase on world leaders to maintain grammaticality. While the

model outputs the top choice, all other choices have relatively high probabilities. This observation has

motivated research into adding constraints to the prediction at each time step. Consequently, we have

added methods for constraining length and prediction into the underlying seq2seq system to produce

different outputs.

Machine Translation. Finally, we consider a more in-depth use case of a real-world machine trans-

lation system using a large model trained on WMT ’14 (3.96M examples) to translate from German

to English. This use case considers a holistic view of how an expert might go about understanding the
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�  Herr Präsident , der Kommissionspräsident war nicht ganz ehrlich , als er letzte Woche über die
Regierungskonferenz sprach .

<s> Mr President , the President of the Commission was not being quite honest when he talked
last week about the Intergovernmental Conference . </s>

�  Er sprach nur von griechischen Staats@@ bürgern , also Einwohnern von Griechenland .

<s> He simply said  &quot; of Greek citizens &quot; , in other words people who are resident in
Greece . </s>

�  Vor wenigen Augen@@ blicken sprach Herr V@@ at@@ anen von Temperaturen , die nicht nur
unter 20 Grad minus , sondern unter 40 Grad minus liegen .

<s> A moment ago , Mr V@@ at@@ anen spoke  to us of lower temperatures , not of 20 degrees
below zero , but of 40 degrees below zero . </s>

�  Er hat von Demokratie , Rechtsstaatlichkeit und Minderheiten@@ schutz gesprochen als drei
Grund@@ elementen der Erwartungen , die die Europäische Union , die Kommission , Rat und auch
Parlament an die Türkei haben und formulieren .

<s> He has  spoken of democracy , the rule of law and the protection of minorities as three
basic elements in the expectations which the European Union , the Commission , the Council and
the European Parliament have of Turkey and which they have formulated . </s>

�  Die Kommissarin sprach von der Bedeutung nationaler Regionen und der Staaten in der
Kommunikations@@ politik .

<s> The Commissioner has  mentioned the importance of national regions , as well as the states
, in its communication policy . </s>

�  Sie sprach von einer vernich@@ tenden Anklage im Zusammenhang mit den Sicherheits@@
über@@ prü@@ fungen .

<s> She spoke  of the dam@@ ning indic@@ tment on safety checks . </s>

�  Herr Kre@@ iss@@ l @-@ Dör@@ f@@ ler beispielsweise hat in Englisch von long term
financing for long term projects gesprochen . Das ist eine verständliche Forderung .

<s> For example , Mr Kre@@ iss@@ l @-@ Dör@@ f@@ ler spoke  in English about &apos; long
@-@ term capital for long @-@ term projects &apos; - this is an obvious issue . </s>

�  Der Abgeordnete sprach auch von der modernen Technologie .

<s> The honourable Member also mentioned  modern technology . </s>
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�  Herr Präsident , der Kommissionspräsident war nicht ganz ehrlich , als er
letzte Woche über die Regierungskonferenz sprach .

<s> Mr President , the President of the Commission was not being quite
honest when he talked  last week about the Intergovernmental Conference .
</s>

�  Vergan@@ gene Woche sprach ich auf der äußerst interessanten Tagung , an
der Mitglieder der Parlamentarischen Versammlung der NATO sowie
Abgeordnete dieses Parlaments teil@@ nahmen .

<s> I spoke  last week at the extremely interesting session that was
organised between members of the NATO parliamentary assembly and
Members of this Parliament . </s>

�  Sie sprach von einer vernich@@ tenden Anklage im Zusammenhang mit den
Sicherheits@@ über@@ prü@@ fungen .

<s> She spoke  of the dam@@ ning indic@@ tment on safety checks . </s>

�  Sie sprach von einer skandal@@ ösen Miß@@ achtung der Sicherheit .

<s> She spoke  of the scandal of abuse of safety . </s>

�  Nach außen hin scheinen diese beiden Vorschläge bestimmte Verfahrens@@
änderungen einzuführen , um die Freizügigkeit in Europa zu fördern und die
jüngsten Urteile , von denen Frau Ber@@ ger in ihren ein@@ führenden
Bemerkungen gesprochen hat , umzusetzen .

<s> On the face of it these two proposals appear to be implementing certain
procedural changes to facilitate freedom of movement across Europe and to
give e�ect to the recent court cases Mrs Ber@@ ger referred  to in her opening
remarks . </s>

�  Zweitens erwähnte er die Nach@@ wahlen .

<s> Secondly , he also  mentioned their by @-@ election . </s>

�  Gestern - einige von Ihnen haben das bereits komm@@ entiert - sprach der
Wirtscha�s@@ ausschuß von der Verbesserung der wirtscha�lichen Situation
in Europa .

<s> Yesterday , as some of you have noted , the Committee on Economic and
Monetary A�airs referred  to the improvement in the economic situation in
Europe . </s>

�  Der Abgeordnete sprach auch von der modernen Technologie .

<s> The honourable Member also mentioned  modern technology . </s>

�  Die Kommissarin sprach von der Bedeutung nationaler Regionen und der
Staaten in der Kommunikations@@ politik .
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�  Herr Präsident , der Kommissionspräsident war nicht ganz ehrlich , als er
letzte Woche über die Regierungskonferenz sprach .

<s> Mr President , the President of the Commission was not being quite
honest when he talked  last week about the Intergovernmental Conference .
</s>

�  Vergan@@ gene Woche sprach ich auf der äußerst interessanten Tagung , an
der Mitglieder der Parlamentarischen Versammlung der NATO sowie
Abgeordnete dieses Parlaments teil@@ nahmen .

<s> I spoke  last week at the extremely interesting session that was
organised between members of the NATO parliamentary assembly and
Members of this Parliament . </s>

�  Sie sprach von einer vernich@@ tenden Anklage im Zusammenhang mit den
Sicherheits@@ über@@ prü@@ fungen .

<s> She spoke  of the dam@@ ning indic@@ tment on safety checks . </s>

�  Sie sprach von einer skandal@@ ösen Miß@@ achtung der Sicherheit .

<s> She spoke  of the scandal of abuse of safety . </s>

�  Nach außen hin scheinen diese beiden Vorschläge bestimmte Verfahrens@@
änderungen einzuführen , um die Freizügigkeit in Europa zu fördern und die
jüngsten Urteile , von denen Frau Ber@@ ger in ihren ein@@ führenden
Bemerkungen gesprochen hat , umzusetzen .

<s> On the face of it these two proposals appear to be implementing certain
procedural changes to facilitate freedom of movement across Europe and to
give e�ect to the recent court cases Mrs Ber@@ ger referred  to in her opening
remarks . </s>

�  Zweitens erwähnte er die Nach@@ wahlen .

<s> Secondly , he also  mentioned their by @-@ election . </s>

�  Gestern - einige von Ihnen haben das bereits komm@@ entiert - sprach der
Wirtscha�s@@ ausschuß von der Verbesserung der wirtscha�lichen Situation
in Europa .

<s> Yesterday , as some of you have noted , the Committee on Economic and
Monetary A�airs referred  to the improvement in the economic situation in
Europe . </s>

�  Der Abgeordnete sprach auch von der modernen Technologie .

<s> The honourable Member also mentioned  modern technology . </s>

�  Die Kommissarin sprach von der Bedeutung nationaler Regionen und der
Staaten in der Kommunikations@@ politik .

Figure 6.12: Use case language transla on using WMT’14 data. The a en on graph (top) shows how a en on for the
target word he is not only focused on the decoder counterpart er but also on the following words, even to the far away
verb gesprochen (spoke). The state trajectory for the decoder states reveals how close he and spoke are. The neighbor-
hood list indicates that the model sets the stage for predic ng spoke as next word.

decisions of the system.

Figure 6.12 shows an example source input and its translation. Here the user has input a source

sentence, translated it, and activated the neighbor view to consider the decoder states. She is interested

in better understanding each stage of the model at this point. This sentence is interesting as there is

significant reordering that must occur to translate from the original German to English. For instance,

the subject he is at the beginning of the clause, but must interact with the verb gesprochen at the end

of the German sentence.

We consider Goals 1 and 2 applied to this example, with the intent of analyzing the encoder, de-

coder, attention, and prediction (S1-S4). First we look at the attention. Normally, this stage focuses

on the word it is translating (er), but researchers have noted that neural models often look ahead to
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Figure 6.13: An under-trained English-German model. Repe on repe on is a commonly observed phenomenon in
under-trained or under-parametrized models. Here the trajectory pictograms show that for the repe on in Stu gart in
Stu gart the decoder states alternate in the same region before being able to break apart.

the next word in this process (Koehn and Knowles, 2017). We can see branches going from he to po-

tential next steps (e.g., von or gesprochen). We can further view this process in the decoder trajectory

shown below, where he and spoke are placed near each other in the path. Hovering over the vector

he highlights it globally in the tool. Furthermore, if we click on he, we can link this state to other ex-

amples in our data (Goal 2). On the right we can see these related examples, with the next word (+1)

highlighted. We find that the decoder is representing not just the information for the current word,

but also anticipating the translation of the verb sprechen in various forms.

In this case we are seeing the model behaving correctly to produce a good translation. However, the

tool can also be useful when there are issues with the system. One common issue in under-trained or

under-parameterized seq2seq models is to repeatedly generate the same phrase. Figure 6.13 shows an

example of this happening. The model repeats the phrase in Stuttgart in Stuttgart. We can observe in

the pictogramview that the decodermodel has produced a loop, ending up in nearly the same position

even after seeing the next word. As a short-term fix, the tool’s prefix decoding can avoid this issue. It

remains an interesting research question to prevent this type of cycle from occurring.

6.5 Conclusions

We have presented Seq2Seq-Vis, a tool to facilitate the exploration of all stages of a seq2seq model.

We apply our set of goals to deep learning models that are traditionally difficult to interpret. This

tool is the first of its kind to combine insights about model mechanics (translation view) with in-
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sights about model semantics (neighborhood view), while allowing for “what if”-style counterfactual

changes of themodel’s internals. The interactionwith themodel internals, in addition to constraining

the predictions and changing the inputs, leads to a better understanding of how the model performs.

Moreover, it allows a user to develop a mental model of the model behavior so that they can learn to

recognize the limitations of a model.

However, this style of output-driven exploration is limited by the number of controllable parts

of a model. In the case of Seq2Seq-Vis, the attention is the only model-internal that is easy to un-

derstand and manipulate. We thus pose that model architectures need to be extended with further

understandable components to achieve a higher degree of coupling between interface and model.
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The theory of probabilities is at bottom nothing

but common sense reduced to calculus.

Pierre-Simon Laplace

7
Bottom-Up Summarization: Extending

Models with Controllable Variables

The previous case studies demonstrated the need for interactive systems, but were also limited by the

number of possible interactions with a model. This became especially clear in Seq2Seq-Vis where all

the interactions are limited to those that are (1) inherently understandable by the user of the tool, and

(2) available within the model. To extend the possible design space for interactions, we thus need to
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extendmodelswith facets that are bothunderstandable and canbeused to control themodel reasoning

process. One approach to this problem, which we demonstrate in this chapter, is to consider how

humans address an NLG tasks, in this case abstractive summarization. Specifically, we show how to

modify the model to follow the human-like domain-specific reasoning process.

As described in Chapter 2.2, text summarization systems aim to generate natural language sum-

maries that compress the information in a longer text. Approaches using neural networks have shown

promising results on this task with end-to-end models that encode a source document and then de-

code it into an abstractive summary. The most commonly applied neural abstractive summarization

models combine extractive and abstractive techniques by using pointer-generator style models which

can copywords from the source document (Gu et al., 2016, See et al., 2017). These end-to-endmodels

produce fluent abstractive summaries but have had mixed success in content selection, i.e. deciding

what to summarize, compared to fully extractive models.

There is an appeal to end-to-end models from a modeling perspective; however, there is evidence

that when summarizing people follow a two-step approach of first selecting important phrases and

then paraphrasing them (Anderson and Hidi, 1988, Jing and McKeown, 1999). A similar argument

has been made for image captioning. Anderson et al. (2018) develop a state-of-the-art model with

a two-step approach that first pre-computes bounding boxes of segmented objects and then applies

attention to these regions. This so-called bottom-up attention is inspired by neuroscience research

describing attention based on properties inherent to a stimulus (Buschman and Miller, 2007).

Motivated by this approach, we consider bottom-up attention for neural abstractive summarization.

Our approach first selects a selection mask for the source document and then constrains a standard

neuralmodel by thismask. This approach can better decidewhich phrases amodel should include in a

summary, without sacrificing the fluency advantages of neural abstractive summarizers. Furthermore,

it requires much fewer data to train, which makes it more adaptable to new domains.

Our full model incorporates a separate content selection system to decide on relevant aspects of the
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Source Document
german chancellor angela merkel [did] not [look] too pleased about the weather during her [an-
nual] easter holiday [in italy.] as britain [basks] in [sunshine] and temperatures of up to 21c,
mrs merkel and her husband[, chemistry professor joachim sauer,] had to settle for a measly 12
degrees. the chancellor and her [spouse] have been spending easter on the small island of ischia,
near naples in the mediterranean for over a [decade.]
[not so sunny:] angelamerkel [and]her husband[, chemistryprofessor joachim sauer,] are spotted
on their [annual] easter trip to the islandof ischia[,] nearnaples[. the] couple [traditionally] spend
their holiday at the five-star miramare spa hotel on the south of the island [, which comes] with
its own private beach [, and balconies overlooking the] ocean [.]...
Reference
• angela merkel and husband spotted while on italian island holiday.
. . .

Baseline Approach
• angela merkel and her husband, chemistry professor joachim sauer, are spotted on their annual

easter trip to the island of ischia, near naples.
. . .

Bottom-Up Summarization
• angelamerkel andher husband are spottedon their easter trip to the islandof ischia, near naples.
. . .

Figure 7.1: Example of two sentence summaries with and without bo om-up a en on. The model does not allow
copying of words in [gray], although it can generate words. With bo om-up a en on, we see more explicit sentence
compression, while without it whole sentences are copied verba m.

source document. We frame this selection task as a sequence-tagging problem, with the objective of

identifying tokens from a document that are part of its summary. We show that a content selection

model that builds on contextualword embeddings (Peters et al., 2018) can identify correct tokenswith

a recall of over 60%, and a precision of over 50%. To incorporate bottom-up attention into abstrac-

tive summarization models, we employ masking to constrain copying words to the selected parts of

the text, which produces grammatical outputs. We additionally experiment with multiple methods

to incorporate similar constraints into the training process of more complex end-to-end abstractive

summarization models, either through multi-task learning or through directly incorporating a fully

differentiable mask.
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Our experiments compare bottom-up attention with several other state-of-the-art abstractive sys-

tems. Compared to our baseline models of See et al. (2017) bottom-up attention leads to an improve-

ment in ROUGE-L score on the CNN-DM corpus from 36.4 to 38.3 while being simpler to train.

We also see comparable or better results than recent reinforcement-learning based methods with our

MLE trained system. Furthermore, we find that the content selection model is very data-efficient

and can be trained with less than 1% of the original training data. This provides opportunities for

domain-transfer and low-resource summarization. We show that a summarization model trained on

CNN-DM and evaluated on the NYT corpus can be improved by over 5 points in ROUGE-L with a

content selector trained on only 1,000 in-domain sentences.

7.1 Related Work

There is a tension in document summarization between staying close to the source document and

allowing compressive or abstractivemodification. Manynon-neural systems take a select and compress

approach. For example, Dorr et al. (2003) introduced a system that first extracts noun and verbphrases

from the first sentence of a news article and uses an iterative shortening algorithm to compress it.

Recent systems such as Durrett et al. (2016) also learn a model to select sentences and then compress

them.

In contrast, recent work in neural network based data-driven extractive summarization has focused

on extracting and ordering full sentences (Cheng and Lapata, 2016, Dlikman and Last, 2016). Nalla-

pati et al. (2016a) use a classifier to determine whether to include a sentence and a selector that ranks

the positively classified ones. These methods often over-extract, but extraction at a word level requires

maintaining grammatically correct output (Cheng andLapata, 2016), which is difficult. Interestingly,

key phrase extraction while ungrammatical often matches closely in content with human-generated

summaries (Bui et al., 2016).
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Athird approach is neural abstractive summarizationwith sequence-to-sequencemodels (Sutskever

et al., 2014, Bahdanau et al., 2015). These methods have been applied to tasks such as headline gen-

eration (Rush et al., 2015) and article summarization (Nallapati et al., 2016b). Chopra et al. (2016)

show that attention approaches that are more specific to summarization can further improve the per-

formance of models. Gu et al. (2016) were the first to show that a copy mechanism, introduced by

Vinyals et al. (2015), can combine the advantages of both extractive and abstractive summarization

by copying words from the source. See et al. (2017) refine this pointer-generator approach and use an

additional coverage mechanism (Tu et al., 2016) that makes a model aware of its attention history to

prevent repeated attention.

Most recently, reinforcement learning (RL) approaches that optimize objectives for summariza-

tion other than maximum likelihood have been shown to further improve performance on these tasks

(Paulus et al., 2018, Li et al., 2018b, Celikyilmaz et al., 2018). Paulus et al. (2018) approach the cov-

erage problem with an intra-attention in which a decoder has an attention over previously generated

words. However RL-based training can be difficult to tune and slow to train. Our method does not

utilize RL training, although in theory this approach can be adapted to RL methods.

Several papers also explore multi-pass extractive-abstractive summarization. Nallapati et al. (2017)

create a new source document comprised of the important sentences from the source and then train

an abstractive system. Liu* et al. (2018) describe an extractive phase that extracts full paragraphs and

an abstractive one that determines their order. Finally Zeng et al. (2016) introduce a mechanism that

reads a source document in two passes and uses the information from the first pass to bias the second.

Our method differs in that we utilize a completely abstractive model, biased with a powerful content

selector.

Other recent work explores alternative approaches to content selection. For example, Cohan et al.

(2018) use a hierarchical attention to detect relevant sections in a document, Li et al. (2018a) gen-

erate a set of keywords that is used to guide the summarization process, and Pasunuru and Bansal
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(2018) develop a loss-function based on whether salient keywords are included in a summary. Other

approaches investigate the content-selection at the sentence-level. Tan et al. (2017) describe a graph-

based attention to attend to one sentence at a time, Chen and Bansal (2018) first extract full sentences

from a document and then compress them, and Hsu et al. (2018) modulate the attention based on

how likely a sentence is included in a summary.

7.2 Background: Neural Summarization

Throughout this paper, we consider a set of pairs of texts (X ,Y)where x ∈ X corresponds to source

tokens x1, . . . , xS and y ∈ Y to a summary y1, . . . , yT with T ≪ S.

Abstractive summaries are generated one word at a time. At every time-step, a model is aware of

the previously generated words. The problem is to learn a function f(x) parametrized by θ that max-

imizes the probability of generating the correct sequences. Following previous work, we model the

abstractive summarization with an attentional sequence-to-sequence model. The attention distribu-

tion p(at|x, y1:t) for a decoding step t, calculated within the neural network, represents an embedded

soft distribution over all of the source tokens and can be interpreted as the current focus of the model.

The model additionally has a copy mechanism (Vinyals et al., 2015) to copy words from the source.

Copy models extend the decoder by predicting a binary soft switch zt that determines whether the

model copies or generates. The copy distribution is a probability distribution over the source text,

and the joint distribution is computed as a convex combination of the two parts of the model,

p(yt+1 | y1:t, x) =

p(zt = 1 | y1:t, x)× p(yt+1 | zt = 1, y1:t, x)+

p(zt = 0 | y1:t, x)× p(yt+1 | zt = 0, y1:t, x)

(7.1)

where the two parts represent copy and generation distribution respectively. Following the pointer-
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Source Masked Source Summary

Content Selection Bottom-Up Attention

Figure 7.2: Overview of the selec on and genera on processes described throughout Sec on 7.3.

generator model of See et al. (2017), we reuse the attention p(at|x, y1:t) distribution as copy distribu-

tion, i.e. the copy probability of a token in the source w through the copy attention is computed as

the sum of attention towards all occurrences ofw. During training, we maximize marginal likelihood

with the latent switch variable, such that

p(yt+1 =w|zj = 1, y1:t, x) =
∑

s:ws=w

ast .

7.3 Bottom-Up Attention

We next consider techniques for incorporating a content selection into abstractive summarization,

illustrated in Figure 7.2.
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7.3.1 Content Selection

We define the content selection problem as a word-level extractive summarization task. While there

has been significant work on custom extractive summarization, we make a simplifying assumption

and treat it as a sequence tagging problem. Let t1, . . . , tS denote binary tags for each of the source

tokens, i.e. 1 if a word is copied in the target sequence and 0 otherwise.

While there is no supervised data for this task, we can generate training data by aligning the sum-

maries to the document. We define a word xi as copied if (1) it is part of the longest possible subse-

quence of tokens s = xi−j:i:i+k, for integers j ≤ i; k ≤ (n − i), if s ∈ x and s ∈ y, and (2) there

exists no earlier sequence uwith s = u.

We use a standard bidirectional LSTM model trained with maximum likelihood for the sequence

labeling problem. Recent results have shown that better word representations can lead to significantly

improved performance in sequence tagging tasks (Peters et al., 2017). Therefore, we first map each to-

kenwi into two embedding channels e(w)
i and e(c)i . The e(w) embedding represents a static channel of

pre-trained word embeddings, e.g. GLoVE (Pennington et al., 2014). The e(c) are contextual embed-

dings from a pretrained language model, e.g. ELMo (Peters et al., 2018) which uses a character-aware

token embedding (Kim et al., 2016b) followed by two bidirectional LSTM layers h(1)i and h(2)i . The

contextual embeddings are fine-tuned to learn a task-specific embedding e(c)i as a linear combination

of the states of each LSTM layer and the token embedding,

e(c)i = γ ×
2∑

ℓ=0

sj × h(ℓ)i ,

withγ and s0,1,2 as trainable parameters. Since these embeddings only add four additional parameters

to the tagger, it remains very data-efficient despite the high-dimensional embedding space.

Both embeddings are concatenated into a single vector that is used as input to abidirectionalLSTM,

which computes a representation hs for a word xs. We can then calculate the probability qs that the
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word is selected as σ(Wchs + bc)with trainable parametersWc and bc.

7.3.2 Bottom-Up Copy Attention

Inspired by work in bottom-up attention for images (Anderson et al., 2018) which restricts attention

to predetermined bounding boxes within an image, we use these attention masks to limit the available

selection of the pointer-generator model.

As shown in Figure 7.1, a common mistake made by neural copy models is copying very long se-

quences or even whole sentences. In the baseline model, over 50% of copied tokens are part of copy

sequences that are longer than 10 tokens, whereas this number is only 10% for reference summaries.

While bottom-upattention could alsobeused tomodify the source encoder representations,we found

that a standard encoder over the full textwas effective at aggregation and therefore limit the bottom-up

step to attention masking.

Concretely, we first train a pointer-generator model on the full dataset as well as the content selec-

tor defined above. At inference time, to generate the mask, the content selector computes selection

probabilities q1:S for each token in a source document. The selection probabilities are used to modify

the copy attention distribution to only include tokens identified by the selector. Let ast denote the

attention at decoding step t to the encoder word at time step s. Given a threshold ϵ, the selection is

applied as a hard mask, such that

p(ãst |x, y1:t) =

⎧
⎪⎪⎨

⎪⎪⎩

p(ast |x, y1:t) qs > ϵ

0 ow.

To ensure that Eq. 7.1 still yields a correct probability distribution, we first multiply p(ãt|x, y1:t) by a

normalization parameter λ1 and then renormalize the distribution. The resulting normalized distri-

1Empirically, we found that values around λ = 2 yield the best results.
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bution can be used to directly replace a as the new copy probabilities.

7.3.3 End-to-End Alternatives

Two-step Bottom-Up attention has the advantage of training simplicity. In theory, though, standard

copy attention should be able to learn how to perform content selection as part of the end-to-end

training. We consider several other end-to-end approaches for incorporating content selection into

neural training.

Method 1: (Mask Only): We first consider whether the alignment used in the bottom-up ap-

proach could help a standard summarization system. Inspired by Nallapati et al. (2017), we investi-

gate whether aligning the summary and the source during training and fixing the gold copy attention

to pick the ”correct” source word is beneficial. We can think of this approach as limiting the set of

possible copies to a fixed source word. Here the training is changed, but no mask is used at test time.

Method 2 (Multi-Task): Next, we investigate whether the content selector can be trained along-

side the abstractive system. We first test this hypothesis by posing summarization as a multi-task prob-

lem and training the tagger and summarization model with the same features. For this setup, we use a

shared encoder for both abstractive summarization and content selection. At test time, we apply the

same masking method as bottom-up attention.

Method 3 (DiffMask): Finally we consider training the full system end-to-end with the mask

during training. Here we jointly optimize both objectives, but use predicted selection probabilities to

softly mask the copy attention p(ãst |x, y1:t) = p(ast |x, y1:t)× qs, which leads to a fully differentiable

model. This model is used with the same soft mask at test time.
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7.4 Inference

Several authors have noted that longer-form neural generation still has significant issues with incorrect

length and repeated words than in short-form problems like translation. Proposed solutions include

modifying models with extensions such as a coverage mechanism (Tu et al., 2016, See et al., 2017) or

intra-sentence attention (Cheng et al., 2016, Paulus et al., 2018). We instead stick to the theme of

modifying inference, and modify the scoring function to include a length penalty lp and a coverage

penalty cp, and is defined as s(x, y) = log p(y|x)/lp(x)− cp(x; y).

Length: To encourage the generation of longer sequences, we apply length normalizations during

beam search. We use the length penalty by Wu et al. (2016), which is formulated as

lp(y) =
(5 + |y|)α

(5 + 1)α
,

with a tunable parameterα, where increasingα leads to longer summaries. We additionally set a min-

imum length based on the training data.

Repeats: Copy models often repeatedly attend to the same source tokens, generating the same

phrase multiple times. We introduce a new summary specific coverage penalty,

cp(x; y) = β

(
−T +

T∑

t=1

max

(
1.0,

S∑

s=1

ast

))
.

Intuitively, this penalty increases whenever the decoder directs more than 1.0 of total attention within

a sequence towards a single encoded token. By selecting a sufficiently high β, this penalty blocks sum-

maries whenever they would lead to repetitions. Additionally, we follow (Paulus et al., 2018) and

restrict the beam search to never repeat trigrams.
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7.5 Data and Experiments

We evaluate our approach on the CNN-DM corpus (Hermann et al., 2015, Nallapati et al., 2016b),

and the NYT corpus (Sandhaus, 2008), which are both standard corpora for news summarization.

The summaries for the CNN-DM corpus are bullet points for the articles shown on their respective

websites, whereas the NYT corpus contains summaries written by library scientists. CNN-DM sum-

maries are full sentences, with on average 66 tokens (σ = 26) and 4.9 bullet points. NYT summaries

are not always complete sentences and are shorter, with on average 40 tokens (σ = 27) and 1.9 bul-

let points. Following See et al. (2017), we use the non-anonymized version of the CNN-DM corpus

and truncate source documents to 400 tokens and the target summaries to 100 tokens in training and

validation sets. For experiments with the NYT corpus, we use the preprocessing described by Paulus

et al. (2018), and additionally remove author information and truncate source documents to 400 to-

kens instead of 800. These changes lead to an average of 326 tokens per article, a decrease from the

549 tokens with 800 token truncated articles. The target (non-copy) vocabulary is limited to 50,000

tokens for all models.

The content selection model uses pre-trained GloVe embeddings of size 100, and ELMo with size

1024. The biLSTM has two layers and a hidden size of 256. Dropout is set to 0.5, and the model

is trained with Adagrad, an initial learning rate of 0.15, and an initial accumulator value of 0.1. We

limit the number of training examples to 100,000 on either corpus, which only has a small impact on

performance. For the jointly trained content selection models, we use the same configuration as the

abstractive model.

For the base model, we re-implemented the Pointer-Generator model as described by See et al.

(2017). To have a comparable number of parameters to previous work, we use an encoder with 256

hidden states for both directions in the one-layer LSTM, and 512 for the one-layer decoder. The em-

bedding size is set to 128. The model is trained with the same Adagrad configuration as the content
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selector. Additionally, the learning rate halves after each epoch once the validation perplexity does

not decrease after an epoch. We do not use dropout and use gradient-clipping with a maximum norm

of 2. We found that increasing model size or using the Transformer (Vaswani et al., 2017) can lead to

slightly improved performance, but at the cost of increased training time and parameters. We report

numbers of a Transformer with copy-attention, which we denote CopyTransformer. In this model,

we randomly choose one of the attention-heads as the copy-distribution, and otherwise follow the

parameters of the big Transformer by Vaswani et al. (2017).

All inference parameters are tuned on a 200 example subset of the validation set. Length penalty

parameter α and copy mask ϵ differ across models, with α ranging from 0.6 to 1.4, and ϵ ranging

from 0.1 to 0.2. The minimum length of the generated summary is set to 35 for CNN-DM and 6 for

NYT. While the Pointer-Generator uses a beam size of 5 and does not improve with a larger beam,

we found that bottom-up attention requires a larger beam size of 10. The coverage penalty param-

eter β is set to 10, and the copy attention normalization parameter λ to 2 for both approaches. We

use AllenNLP (Gardner et al., 2018) for the content selector, and OpenNMT-py for the abstractive

models (Klein et al., 2017).2.

7.6 Results

Table 7.1 shows our main results on the CNN-DM corpus, with abstractive models shown in the

top, and bottom-up attention methods at the bottom. We first observe that using a coverage infer-

ence penalty scores the same as a full coverage mechanism, without requiring any additional model

parameters or model fine-tuning. The results with the CopyTransformer and coverage penalty in-

2Code and reproduction instructions can be found at https://github.com/sebastianGehrmann/
bottom-up-summary

2These results compare on the non-anonymized version of this corpus used by (See et al., 2017). The best re-
sults on the anonymized version are R1:41.69 R2:19.47 RL:37.92 from (Celikyilmaz et al., 2018). We compare
to their DCA model on the NYT corpus.

125

https://github.com/sebastianGehrmann/bottom-up-summary
https://github.com/sebastianGehrmann/bottom-up-summary


Method R-1 R-2 R-L
Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
ML + Intra-Attention (Paulus et al., 2018) 38.30 14.81 35.49
ML + RL (Paulus et al., 2018) 39.87 15.82 36.90
Saliency + Entailment reward (Pasunuru and Bansal, 2018) 40.43 18.00 37.10
Key information guide network (Li et al., 2018a) 38.95 17.12 35.68
Inconsistency loss (Hsu et al., 2018) 40.68 17.97 37.13
Sentence Rewriting (Chen and Bansal, 2018) 40.88 17.80 38.54
Pointer-Generator (our implementation) 36.25 16.17 33.41
Pointer-Generator + Coverage Penalty 39.12 17.35 36.12
CopyTransformer + Coverage Penalty 39.25 17.54 36.45
Pointer-Generator + Mask Only 37.70 15.63 35.49
Pointer-Generator + Multi-Task 37.67 15.59 35.47
Pointer-Generator + DiffMask 38.45 16.88 35.81
Bottom-Up Summarization 41.22 18.68 38.34
Bottom-Up Summarization (CopyTransformer) 40.96 18.38 38.16

Table 7.1: Results of abstrac ve summarizers on the CNN-DM dataset.3 The first sec on shows encoder-decoder ab-
strac ve baselines trained with cross-entropy. The second sec on describes reinforcement-learning based approaches.
The third sec on presents our baselines and the a en on masking methods described in this work.

dicate a slight improvement across all three scores, but we observe no significant difference between

Pointer-Generator and CopyTransformer with bottom-up attention.

We found that none of our end-to-endmodels lead to improvements, indicating that it is difficult to

apply the masking during training without hurting the training process. TheMask Onlymodel with

increased supervision on the copy mechanism performs very similar to the Multi-Task model. On

the other hand, bottom-up attention leads to a major improvement across all three scores. While we

would expect better content selection to primarily improve ROUGE-1, the fact all three increase hints

that the fluency is not being hurt specifically. Our cross-entropy trained approach even outperforms

all of the reinforcement-learning based approaches in ROUGE-1 and 2, while the highest reported

ROUGE-L score by Chen and Bansal (2018) falls within the 95% confidence interval of our results.

Table 7.2 shows experiments with the same systems on the NYT corpus. We see that the 2 point

improvement compared to the baseline Pointer-Generatormaximum-likelihood approach carries over
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Method R-1 R-2 R-L
ML* 44.26 27.43 40.41
ML+RL* 47.03 30.72 43.10
DCA† 48.08 31.19 42.33
Point.Gen. + Coverage Pen. 45.13 30.13 39.67
Bottom-Up Summarization 47.38 31.23 41.81

Table 7.2: Results on the NYT corpus, where we compare to RL trained models. * marks models and results by Paulus
et al. (2018), and † results by Celikyilmaz et al. (2018).

to this dataset. Here, themodel outperforms theRLbasedmodel by Paulus et al. (2018) inROUGE-1

and 2, but not L, and is comparable to the results of (Celikyilmaz et al., 2018) except for ROUGE-

L. The same can be observed when comparing ML and our Pointer-Generator. We suspect that a

difference in summary lengths due to our inference parameter choices leads to this difference, but did

not have access to their models or summaries to investigate this claim. This shows that a bottom-up

approach achieves competitive results even to models that are trained on summary-specific objectives.

The main benefit of bottom-up summarization seems to be from the reduction of mistakenly

copied words. With the best Pointer-Generator models, the precision of copied words is 50.0% com-

pared to the reference. This precision increases to 52.8%, which mostly drives the increase in R1.

An independent-samples t-test shows that this improvement is statistically significant with t=14.7

(p < 10−5). We also observe a decrease in average sentence length of summaries from 13 to 12 words

when adding content selection compared to the Pointer-Generator while holding all other inference

parameters constant.

Domain Transfer While end-to-end training has become common, there are benefits to a two-

step method. Since the content selector only needs to solve a binary tagging problem with pretrained

vectors, it performs well even with very limited training data. As shown in Figure 7.3, with only 1,000

sentences, the model achieves an AUC of over 74. Beyond that size, the AUC of the model increases

only slightly with increasing training data.
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Figure 7.3: The AUC of the content selector trained on CNN-DM with different training set sizes ranging from 1,000 to
100,000 data points.

AUC R-1 R-2 R-L
CNNDM 25.63 11.40 20.55
+1k 80.7 30.62 16.10 25.32
+10k 83.6 32.07 17.60 26.75
+100k 86.6 33.11 18.57 27.69

Table 7.3: Results of the domain transfer experiment. AUC numbers are shown for content selectors. ROUGE scores
represent an abstrac ve model trained on CNN-DM and evaluated on NYT, with addi onal copy constraints trained on
1/10/100k training examples of the NYT corpus.

To further evaluate the content selection, we consider an application to domain transfer. In this ex-

periment, we apply the Pointer-Generator trained on CNN-DM to the NYT corpus. In addition, we

train three content selectors on 1, 10, and 100 thousand sentences of the NYT set, and use these in the

bottom-up summarization. The results, shown in Table 7.3, demonstrates that even a model trained

on the smallest subset leads to an improvement of almost 5 points over the model without bottom-up

attention. This improvement increases with the larger subsets to up to 7 points. While this approach

does not reach a comparable performance to models trained directly on the NYT dataset, it still rep-

resents a significant increase over the not-augmented CNN-DM model and produces summaries that

are quite readable. This technique could be used for low-resource domains and for problems with

limited data availability.

7.7 Analysis and Discussion
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Method R-1 R-2 R-L
LEAD-3 40.1 17.5 36.3
NEUSUM (Zhou et al., 2018) 41.6 19.0 38.0
Top-3 sents (Cont. Select.) 40.7 18.0 37.0
Oracle Phrase-Selector 67.2 37.8 58.2
Content Selector 42.0 15.9 37.3

Table 7.4: Results of extrac ve approaches on the CNN-DM dataset. The first sec on shows sentence-extrac ve
scores. The second sec on first shows an oracle score if the content selector selected all the correct words accord-
ing to our matching heuris c. Finally, we show results when the Content Selector extracts all phrases above a selec on
probability threshold.

Extractive Summary by Content Selection? Given that the content selector is effective in

conjunction with the abstractive model, it is interesting to know whether it has learned an effective ex-

tractive summarization system on its own. Table 7.4 shows experiments comparing content selection

to extractive baselines. The LEAD-3 baseline is a commonly used baseline in news summarization

that extracts the first three sentences from an article. Top-3 shows the performance when we extract

the top three sentences by average copy probability from the selector. Interestingly, with this method,

only 7.1% of the top three sentences are not within the first three, further reinforcing the strength of

the LEAD-3 baseline. Our naive sentence-extractor performs slightly worse than the highest reported

extractive score by Zhou et al. (2018) that is specifically trained to score combinations of sentences.

The final entry shows the performance when all the words above a threshold are extracted such that

the resulting summaries are approximately the length of reference summaries. The oracle score repre-

sents the results if ourmodel had a perfect accuracy, and shows that the content selector, while yielding

competitive results, has room for further improvements in future work.

This result shows that the model is quite effective at finding important words (ROUGE-1) but

less effective at chaining them together (ROUGE-2). Similar to Paulus et al. (2018), we find that the

decrease in ROUGE-2 indicates a lack of fluency and grammaticality of the generated summaries. A

typical example looks like this:
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Data %Novel Verb Noun Adj
Reference 14.8 30.9 35.5 12.3
Vanilla S2S 6.6 14.5 19.7 5.1
Pointer-Generator 2.2 25.7 39.3 13.9
Bottom-Up Attention 0.5 53.3 24.8 6.5

Table 7.5: %Novel shows the percentage of words in a summary that are not in the source document. The last three
columns show the part-of-speech tag distribu on of the novel words in generated summaries.

a man food his first hamburger wrongfully for 36 years. michael hanline, 69, was con-

victed of murder for the shooting of truck driver jt mcgarry in 1980 on judge charges.

This particular ungrammatical example has aROUGE-1of 29.3. This further highlights the benefit of

the combined approach where bottom-up predictions are chained together fluently by the abstractive

system. However, we also note that the abstractive system requires access to the full source document.

Distillation experiments in which we tried to use the output of the content-selection as training-input

to abstractive models showed a drastic decrease in model performance.

Analysis of Copying While Pointer-Generator models have the ability to abstract in summary,

the use of a copy mechanism causes the summaries to be mostly extractive. Table 7.5 shows that with

copying the percentage of generated words that are not in the source document decreases from 6.6%

to 2.2%, while reference summaries are much more abstractive with 14.8% novel words. Bottom-up

attention leads to a further reduction to only a half percent. However, since generated summaries are

typically not longer than 40-50 words, the difference between an abstractive system with and with-

out bottom-up attention is less than one novel word per summary. This shows that the benefit of

abstractive models has been less in their ability to produce better paraphrasing but more in the ability

to create fluent summaries from a mostly extractive process.

Table 7.5 also shows the part-of-speech-tags of the novel generated words, and we can observe an

interesting effect. Application of bottom-up attention leads to a sharp decrease in novel adjectives
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Figure 7.4: For all copied words, we show the distribu on over the length of copied phrases they are part of. The black
lines indicate the reference summaries, and the bars the summaries with and without bo om-up a en on.

and nouns, whereas the fraction of novel words that are verbs sharply increases. When looking at the

novel verbs that are being generated, we notice a very high percentage of tense or number changes,

indicated by variation of the word “say”, for example “said” or “says”, while novel nouns are mostly

morphological variants of words in the source.

Figure 7.4 shows the length of the phrases that are being copied. While most copied phrases in

the reference summaries are in groups of 1 to 5 words, the Pointer-Generator copies many very long

sequences and full sentences of over 11 words. Since the content selection mask interrupts most

long copy sequences, the model has to either generate the unselected words using only the generation

probability or use a different word instead. While we observed both cases quite frequently in gener-

ated summaries, the fraction of very long copied phrases decreases. However, either with or without

bottom-up attention, the distribution of the length of copied phrases is still quite different from the

reference.

Inference Penalty Analysis We next analyze the effect of the inference-time loss functions.

Table 7.6 presents the marginal improvements over the simple Pointer-Generator when adding one

penalty at a time. We observe that all three penalties improve all three scores, even when added on
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Data R-1 R-2 R-L
Pointer Generator 36.3 16.2 33.4
+ Length Penalty 38.0 16.8 35.0
+ Coverage Penalty 38.9 17.2 35.9
+ Trigram Repeat 39.1 17.4 36.1

Table 7.6: Results on CNN-DM when adding one inference penalty at a me.

top of the other two. This further indicates that the unmodified Pointer-Generator model has already

learned an appropriate representation of the abstractive summarization problem, but is limited by its

ineffective content selection and inference methods.

7.8 Conclusion

In this chapter, we presented a simple but accurate content selection model for summarization that

identifies phrases within a document that are likely included in its summary. This mechanism follows

the inherent structure of the summarization problem and simulates a similar reasoning process to

that of humans. The content selection is thus understandable and meshes with the mental model

that humans might have of the problem.

We showed that the content selector can be used in a bottom-up attention that restricts the ability

of abstractive summarizers to copy words from the source. The combined bottom-up summarization

system leads to improvements in ROUGE scores of over two points on both the CNN-DM and NYT

corpora. A comparison to end-to-end trained methods showed that this particular problem cannot

be easily solved with a single model, but instead requires fine-tuned inference restrictions. Finally, we

showed that this technique, due to its data-efficiency, can be used to adjust a trained model with few

data points, making it easy to transfer to a new domain.

Since the content selection provides the means to control the reasoning process of the model, we

have the second essential building blocks of collaboration, the controllability. We will show in the next
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chapter how we can put the building blocks together as part of a collaborative interface.
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They told me computers could only do arithmetic.

Grace Hopper

8
Collaborative Semantic Inference

One way to achieve collaboration is through the ability to have a discourse, where agents alternate

between explaining their reasoning process and giving feedback on potential improvements. Through

this iterative process, the agents should come to a mutually agreed upon solution to a problem, often

one that is better than a single agent could have achieved alone.

This collaborative behavior within autonomous agents requires them to have the ability to (1) ex-

plain their reasoning process, and (2) update the reasoning based on received feedback. To accomplish
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this goal, researchers from many disciplines argued that intelligent systems should be designed as team

members (Grosz, 1996, Horvitz, 1999, Amershi et al., 2019, Heer, 2019, inter alia). In that case, the

model output could enrich humans instead of replacing them. However, following this design process

is not achievable with standard deep learning-based models.

To accomplish the goal, we thus need to design interactivemodels instead of autonomousmodels.

To fulfill the two requirements, the interactions of a model must be easily understandable by a human

end user. Therefore, we need to consider the interaction design when modeling a language generation

problem. The designed interactions have to be reflectedwithin themodel design, which is an unsolved

challenge for deep learning models.

To approach the problem, we propose a framework that can be applied to enable users to control

predictive processes called collaborative semantic inference (CSI).1 CSIdescribes a dialogue, alternating

between model predictions presented in a visual form and user feedback on internal model reasoning.

This process requires exposing the model’s internal process in a way that meshes with the users mental

model of the problem and then empowering the user to influence this process. This approach is cen-

tered around the core designprinciples for visual analytics, which integrates visualization and analytics

in a human-centered interface (Keim et al., 2008). Endert et al. (Endert et al., 2012) define semantic

interactions as those which “enable analysts to spatially interact with [such]models directlywithin the

visual metaphor using interactions that derive from their analytic process.” CSI describes how to con-

nect these semantic interactions to the model inference process. The development of CSI methods

and interfaces further requires a tight collaboration between the visual analytics, interaction design,

andmachine learning experts, which is a challenging, but promising, directionof research (Sacha et al.,

2019, Endert et al., 2017, Stolper et al., 2014, Hohman et al., 2018).

As described before, deep neural networks do not expose their internal reasoning process. The CSI

framework thus requires the development of model extensions that expose intermediate reasoning

1This chapter presents results from Gehrmann et al. (2019a).
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that can be associated with user-understandable choices. Our proposed solution to this problem is

to incorporate discrete latent variables (Kim et al., 2018) into the model design. These variables act

as “hooks” that can control the reasoning process and output of a model. The hooks enable what-if

analyses by answering what internal choices would have led to a specific output. Crucially for CSI,

the hooks also allow a user to infer the model’s reasoning process by seeing how a given output was

selected. This visual analysis in the backward direction, from prediction to input, is typically not

possible without model modifications.

Tocontextualize themulti-disciplinary co-designprocess and assist indeveloping collaborative tools,

we extend the the visualization and interaction design space for neural network models we introduced

in Chapter 3.2. Specifically, we extend definition of interpretability tools for model- and decision-

understanding with the potential for model- and decision-shaping. The core difference here is that,

through interaction, the model or decisions themselves can be shaped by human end users. The

shaping-based techniques require an even tighter coupling between the model and the interface than

interactive observation tools, and even change the model-design itself. We, therefore, add a third cat-

egory interactive collaboration, which can be achieved through methods like CSI.

As proof of concept, we apply our design process to the use case of a document summarization

system. When this task is handled by an automated system, the results almost always require heavy

post-editing by humans. Our use-case presents a collaborative, deep learning-based, interface for this

problem. This use-case also demonstrates the expanded design space of interactive visual interfaces for

collaborative models.

8.1 Interactive Collaboration

We define collaboration in interactive interfaces for deep learning models as the ability of end-users

or trainers with domain knowledge to present feedback to the model. The goal of collaboration is to
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model outputinput

model outputinput

model outputinput

hooks

(a)
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(c)

human intervention

model inference

hard to understand

Figure 8.1: The categoriza on of interface types for collabora on with and interpreta on of neural networks. As we
move from passive observa on (a) to interac ve observa on (b) and interac ve collabora on (c), the interface requires a
ghter integra on with the model.

shape themodel or its decisions, whichmeans that either the decisions or themodel itself update based

on the human feedback. We call these backward interactions. Since each interaction direction needs

to call a different shaping process within the model, the interface and model in interactive collabora-

tion tools require a tight coupling. Only co-designing the model, visualizations, and interactions can

achieve this tight integration.

Figure 8.1 illustrates the difference between interactive collaboration (c),passive observation, and

interactive observation.
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Model-Shaping On the model-level, the feedback is expressed as user-provided labels which can

be used to change the model parameters in an active learning setting (Holzinger, 2016, Cohn et al.,

1996, Jiang et al., 2019). In the forward direction, model performance can be visualized, and new sam-

ples for the labeling process can be selected (Holzinger, 2016). The model parameters can be updated

through backward interactions (Smilkov et al., 2017a, Kulesza et al., 2010).

Decision-Shaping Interactive collaboration for decision-shaping requires an interface in which

the end-user can guide the model-internal reasoning process to generate a different output than the

model would have reached on its own. Since interactive collaborative interfaces also retain the abil-

ity for forward interactions, the intervention enables an interplay between suggestions by the model

and feedback by the user. Our proposed approach to developing CSI methods, which we describe in

Section 8.2, presents one way to design such applications.

During forward interactions, the visualization shows what the model-internal reasoning process

looks like for a specific input. During backward interactions, the end-user can modify the output

and observe how the model-internal reasoning process would have looked to arrive at that specific

output. The incorporation of these feedback mechanisms into visual analytics tools requires three

essential components. First, the model needs to expose an interpretable hook along its internal rea-

soning chain, which should be transparent in derivation and understandable for non-experts (Lipton,

2018). Second, this interpretable hookneeds to correspond to thementalmodel of the end-user. Most

importantly, a collaborative tool needs to enable efficient interactions with the visual metaphor of the

hook through semantic interaction (Endert et al., 2012).

The interpretable hooks of a model can act as explanations for rules of behavior that models learn.

These explanations have been shown to improve model personalization (Bostandjiev et al., 2012) and

explainability (Caruana et al., 2015, Kulesza et al., 2015). Conversely, failing to provide explanations

can inhibit the development of mental models in end-users (Lim et al., 2009). However, explanations
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should also not overwhelm an end-user, and many previous approaches thus choose to select less com-

plex models (Lacave and Díez, 2002) or aim to reduce the feature space of a trained model (Craven and

Shavlik, 1997, Yang and Pedersen, 1997).

CSI systems have models and end-users collaborate on the same output. This contrasts with pre-

vious work that often treats the model as a complementary assistant, for example recommending ci-

tations for a writer (Babaian et al., 2002). Moreover, CSI argues for a design approach to collabora-

tive interfaces where the user retains agency over the exposed parts of the model’s reasoning process.

Even in related approaches where the model and user both generate content, the users either do not

have control over the model suggestions (Guzdial et al., 2017) or the model is replaced by uncontrol-

lable crowdworkers (Bernstein et al., 2010). While previous work on interactive phrase-basedmachine

translation showed promising results towards the goal of collaborative interfaces, the same techniques

are not possible with deep learning-based approaches (Green et al., 2014). This lack of previous work

can in part be attributed to deep learningmethods having only recently reached the performance levels

necessary for CSI-style interfaces.

8.2 Rearchitecting models to enable collaborative semantic inference

Interactive collaboration requires interpretablemodel hooks that enable semantic collaboration. From

the machine learning side, these hooks can be implemented as discrete latent variables. During the

prediction, or inference, process, the variables take on explicit values. Additionally, the variables must

reflect anunderstandable aspect about the problem, that is beingmodeled, such that the explicit values

are meaningful to a human user.

To illustrate this process, we consider a hook resembling a lever that directs a train toward a left

or right track, as shown in Figure 8.2. A model is predicting where a train will end up. Without

the hook, the model can predict the end position accurately, but it is not clear how it will get there
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(top-left). Similarly, once the train reaches the top of the tracks, the model cannot explain how it got

there (bottom-left). With the hook, however, the prediction explicitly exposes the lever decision. That

means that the user can directly observe the position of the lever and thus knows whether the train

will take the left or right track (top-right). Once the train is at the top of the intersection, the user can

look at the position of the lever to find the path the train has taken (bottom-right). Most importantly,

once the hook has been exposed, an end user can constrain or overwrite the decision-process in the

model. If she wants the train to always take the right path, she could set the lever to the right position.

This would not be possible without exposing this decision.

We next consider the summarization problem from Chapter 7. If we think of the content selec-

tion as the decision to use a word in a summary, we can make the summarization model control-

lable in the same way. Recall that summarization aims to generate a sequence of words y1, . . . , yT

that is conditioned on an input x using a deep model, where x represents a long document and y

the summary. A forward-only deep sequence model defines a conditional distribution to predict

one word at a time, p(yt+1 | y1:t, x) while considering all previously generated words. To formal-

ize hooks for the collaborative approach, the deep sequence model is extended to expose intermediate

terms as latent variables z. In the summarization example, this could be the decision of which words

in an input are considered important enough to be included in a summary. The architect defines

p(yt+1 | y1:t, x) =
∑

z p(yt+1 | y1:t, x, z) × p(z | y1:t, x) for the latent variable z. As a result, the

model considers all possible values of z to make a prediction. In the train-lever example, doing this

enables us to run the inference process to compute the best lever position by looking at which of the

two positions would lead to a better final position as judged by the model.

This approach splits the black-box into multiple parts: a prediction network, p(yt+1 | y1:t, x, z),

that predicts the next word, and a hook network, p(z | y1:t, x), that predicts the value of the latent

variables z. Because this model is probabilistic, we can also perform posterior or backward inference.

This gives p(z | y1:T , x), the distribution of z after taking into account the entire output, for example
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Figure 8.2: The advantage of latent variables is the transparent reasoning process. CSI requires model reasoning, illus-
trated by a lever that dictates which turn a train is taking. In the forward inference direc on, we know in both cases
where the train will end up, but only the lever allows us to know what path it will take. Similarly, in the backward infer-
ence direc on, we know where the train originated, but only the lever shows the track it took to get there.

the summary.

Another example of a collaborative interface could be for semantic image synthesis (Chen and

Koltun, 2017, Wang et al., 2018b, Park et al., 2019). In this application, a user-defined input x de-

scribes high-level features, for example, the location of grass and sky, and a neural network generates

the corresponding image. For this case, y is an image andnot a sequence ofwords. Current approaches

do not allow iterative refinement through interaction with an image and are limited to changing the

input and generating a completely new output. A collaborative approach to the same problem is
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GANPaint (Bau et al., 2019), which uses a hook network to associate parts of the latent space of an

image-generating model with semantic features and exposes a modification interface to the user.

In a real-world exampleof ahook-network,GoogleTranslate recently introduced a semi-collaborative

approach to preventing gender-discrimination in translation systems. By treating gender as a hook,

they can present all possible options for gendered pronouns in a translations when the gender in a

source language is ambiguous. This approach allows a user to pick the translation they want. At this

time, the approach has been implemented for Turkish, which is a language without grammatically

gendered nouns and pronouns.

Themodel hooks representways inwhich users can constrain and overwrite interpretable decisions

in otherwise end-to-end black boxes. They are extensions of otherwise well-performing models to ex-

pose the latent variable. Hooks must be co-designed by experts in interaction design, visualization,

and machine learning. They decide together on the model hooks, desired interactions, and the associ-

ated visual encodings. While some guidelines have been developed for interaction design for machine

learning (Fails and Olsen Jr, 2003, Stumpf et al., 2009, Amershi et al., 2014, Yang, 2018), they focus

on cases where the model performs complementary tasks to the user, or where the user interacts with

black-box models. In contrast, CSI enables the study of interaction design for models that approach

the same task as the user. One important question that requires further study is how many hooks

are actually useful to a user. As more latent variables are designed and incorporated into a model,

the training process becomes increasingly more challenging and model performance might degrade.

Moreover, the increase in potential user interactions with additional hooks might overwhelm users.

As a consequence, we focus on a model with a single hook throughout our use case and show how

even a single hook can enable many powerful interactions.
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(a) (c)(b)

(d) (d)

(e) (f)(g) (g)(h)

Figure 8.3: Overview of the CSI:Summariza on visual interface. (a) shows the input and overlays the currently selected
content selec on (blue) and the current content of the summary (red). (b) shows a connec on between the input and
the current summary through the a en on, which shows explicitly where words in the summary came from. (c) shows
the current summary, (d) shows proxy elements for both input and output groups. This enables an overview of a doc-
ument, even when the text does not fit on one page. (e) allows the user to request sugges ons from the model, (f)
enters the edit mode and adds a new sentence to the summary. (g) toggles whether the text should be aggregated into
sentences. (h) provides quick selec ons for the content selec on (blue) by being able to match the red highlights, or
(de-)select everything.

8.3 Use Case: A Collaborative Summarization Model

We demonstrate an application of the CSI framework to the use case of text summarization. Text

summarization systems aim to generate summaries in natural language that concisely represent infor-

mation in a longer text. This problem has been targeted by the deep learning community using an ap-

proach known as sequence-to-sequence models with attention (Bahdanau et al., 2015, Sutskever et al.,

2014). These models have three main architectural components: (1) an encoder that reads the input

and represents each input word as a vector, (2) a decoder that takes into consideration all previously

generated words and aims to predict the next one, and (3) an attention mechanism that represents an
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alignment between the current decoding step and the inputs. In summarization, the attention can

be loosely interpreted as the current focus of the generation and can be visualized for each generated

word (Strobelt et al., 2019).

Imagine an end-user called Anna using an interface powered by a summarization model. Current

deep learning models act in a forward-only manner, as described above; therefore the design space is

limited to an interactive observation interface. This interface allows Anna to paste an input text and

have the model infer an output summary. If Anna does not like the output summary, she can edit

the suggestion to her liking, but it is not possible to reuse the model to check her changes. Moreover,

if the model produced a bad or wrong output, Anna would have to write the entire summary from

scratch.

Applying the CSI framework and extending a well-performing summarization model with the pre-

viously defined hooks can address these issues. By tying the user’s interactions to understandable reac-

tions from the model, we can achieve three types of previously not possible interactions. The collab-

orative interface (1) guides the model towards important content, (2) enables a dialogue between

human-generated and machine-generated output, and (3) allows a user to review the decisions the

model would have made to generate a specific output, i.e., what parts of an input text the model chose

to summarize.

These changes require designing a semantic model hook that can describe the content that a model

considers for a summary. We, therefore, formalize content selection as a hook for each word in a doc-

ument. By exposing the hook within the interface, we can describe the semantic interaction as the

user-decision what content of a document is relevant for its summary.
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8.4 Details on the Summarization Model Hooks

We base the summarization model on the bottom-up model described in Chapter 7. As with that

model, we use a sequence-to-sequence model with an attention distribution p(at|x, y1:t) for each de-

coding (generation) step t over all the source words in x, which is calculated as part of the neural

network. Our model additionally uses the same copy mechanism to enable the model to either gener-

ate a new word or copy a word from the source document during the generation. The copy-attention

is directly interpretable since a high value means that the model is actually copying a specific word

from the input.

As we demonstrated, this approach yields high performance on automatic metrics, but the end-

to-end approach with decisions per generated word is disconnected from human summarization ap-

proaches. Specifically, we identified that the model does not follow the human-like approach of first

deciding what content within a document is important, and then trying to paraphrase it (Jing and

McKeown, 1999). However, the bottom-up mechanism we introduced can be used as a control-

lable hook within the model. The hook network predicts the probabilities p(t|x) to decide what con-

tent is important. The prediction network that generates the summary p(yt+1|x, y1:t, t) uses these

probabilities to avoid copying unimportant content. Since the model explicitly reasons over content-

importance through the hook network, we can achieve semantic interactions by letting users define a

prior on p(t|x). When user deselects a sentence from the input, we set the prior p(t) for all its words

to 0, which means that the hook network can no longer identify the words as important which means

that it is prevented from copying deselected words.

The last step towards the fully integrated CSI:Summarization is backward inference, i.e. the iden-

tification of what content a summary actually used, or p(t|x, y). The backwards model is a separate

model we specifically developed for the interface. It uses a contextualized representation of words in

both input and summary that represents them as vectors of sizeDhid (Devlin et al., 2019), denoted as
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xs and yt. Given the representation for a word xs, the model computes an attention over y, such that

each summary word yt is assigned an attention weight as,t. We use these weights to derive a context

for the word xs which we denote cs, by computing

cs =
T∑

t=1

as,t × yt.

To arrive at a probability that xs was used in the output, we apply a simple MLP,

p(ts|x, y) = σ(W2 tanh(W1[xs, cs] + b1) + b2),

where b1, b2 are trainable bias terms and W1 ∈ RDhid×2Dhid and W2 ∈ R1×Dhid trainable pa-

rameters. Since this model is independent of the forward model, it can analyze arbitrary summaries,

even those that are written by the end user, as we show throughout the use case of Anna generating a

summary by using our CSI interface to collaborate semantically with the model.

8.4.1 Collaborative Summarization: Anna’s Story

Anna intends to collaborativelywrite a summary of an article describing how scientists foundwater on

Mars2. She begins by reading the article to assesswhat information is relevant and should be part of the

summary. Then to begin the interaction, she selects the entire input text, shown by the blue highlights

in Figure 8.3a, letting the model know it is free to summarize any relevant part of the document.

She starts the collaborative writing process by requesting that the model suggest three initial sen-

tences (Figure 8.3c). This triggers a forward inference of the model and a visual update that presents

the suggestions to Anna. At the same time, the system computes a backward inference to show which

part of the input has been summarized. Visually, the input text may be longer than the browser win-

dow, so we introduce a proxy element for each sentence in input and output (Figure 8.3d). The words

2The article can be found at https://www.cnn.com/2015/03/06/us/mars-ocean-water-study
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(a)

(b)

(c)

Figure 8.4: A er selec ng the content shown on the le , Anna requests the model to generate a fourth sentence (a).
She does not like the sugges on and deletes it (b). To influence the model to generate about other topics in the input,
she deselects the sentences that caused the sugges on (c).

(a) (b)

(c)

(d)

Figure 8.5: Anna wants to generate a sentence about the water on Mars and starts typing “The water is ...” (a). This ini -
ates the model to finish the sentence for her (b). To correct a minor mistake in the generated sentence, Anna ac vates
the edit mode (c) and replaces the wrong word (d).

in the input that are related to the summary are presented with a red underline and the proxies of the

sentences with at least one related word have a red border (Figure 8.3a,b). The interface also visualizes

the model “attention,” which shows which covered words were selected by the model at what step

during the generation. The attention is visualized using grey ribbons that are aggregated across each

sentence and connect the proxy elements. If Anna hovers over one of the sentences or proxies, the

interface highlights the relevant connections in yellow (Figure 8.3b).

Through these visual interactions with the output summary, Anna observes that the second input
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(a)

(b)

(c)

(d)

(e)

Figure 8.6: Anna selects a sentence that is currently not covered by the summary, indicated by the lack of a red border
on the right (a). She generates a new sentence (b) and corrects the repeated phrase “nasa scien sts say” (c). With the
finished dra of her summary, she can now evaluate the coverage of the input document (d) and the final summary (e).

sentence (“scientists at nasa are one step closer to understanding how much water could have existed on

primeval mars. these new findings also indicate how primitive water reservoirs there could have evolved

over billions of years, indicating that early oceans on the red planet might have held more water than

earth’s arctic ocean, nasa scientists reveal [...]”) splits into two different summary sentences (“primi-

tive water reservoirs there could have evolved over billions of years, scientists say.” and “early oceans on

the red planet might have held more water than earth’s arctic ocean.”). It is common for summariza-

tion models to compress, merge, and split input sentences, but the user would not be aware of where

the inputs for each summary sentence originate. By exposing the internal model decisions in a CSI

interface, a user can immediately discover how the input connects to the output.

From this suggested summary, Anna determines that the input focus of the system was correct,

but that output text should elaborate on these sentences in more detail. She communicates this by

first constraining the model to the currently focused region. She can match the content selection

(blue highlights) with the result of the backward inference (red underlines) by clicking “match” in Fig-

ure 8.3h. With these constraints, she triggers the generation of an additional output sentence (“nasa
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scientists say thatmuch of this water loss happened over billions of years, alongwith a loss of atmosphere.”)

(Figure 8.4a). This suggestion is the result of a forward inference with her additional constraint on

the model hook.

Unfortunately,Anna is dissatisfiedwith thenew sentence, so she removes it from the summary (Fig-

ure 8.4b). To prevent the model from suggesting the same sentence again, she consults the backward

inference and deselects the input sentence that had the highest influence on its generation by clicking

on its proxy element (Figure 8.4c). With this updated constraint, Anna generates another sentence

(“water trapped in mars’ polar ice caps has a much higher level of hdo than fluid water on earth.”) that

better captures her goals. (Figure 8.5a).

Anna would next like to include more details in the summary, particularly about water found on

Mars. The system allows her to intervene in the output text directly. She starts writing “the water

is” and then adds an ellipse (...) that triggers sentence completion by the model (Figure 8.5b,c). The

resulting sentence (“the water is very likely wet for a longer period of time than was previously thought,

the scientists say.”) is acceptable to her, but she now spots an error with the verb (“is”) which should

be in the past tense. She quickly corrects this output (Figure 8.5d,e), which invokes a backward infer-

ence to the input document. By updating the red highlights in the input, the interface provides her

with information about what content was selected was used to create this improved sentence. These

interactions help her create a mental picture of the model behavior.

Finally, Anna would like the model to help her generate a sentence about a region of the input

that is currently not included in the summary. She selects a previously unused sentence in the input

(“this ocean had a maximum depth of around 5,000 feet or around one mile deep, said villanueva.”)

(Figure 8.6a), requests another forward inference, and approves of the resulting suggestion (“this ocean

had a maximum depth of around 5,000 feet or around one mile deep, nasa scientists say.”). However,

she dislikes the repetition of “scientist say” (Figure 8.6b). After entering the edit mode on the output

side, she removes one of the repeated phrases (Figure 8.6c). Upon leaving the edit mode, the interface
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automatically triggers another backward inference that updates which parts of the inputs are covered.

Anna uses this information to evaluate how much of the document is covered by her summary. By

looking at the computed coverage (Figure 8.6d), she can observe which sentences are covered and

analyze how many of the proxies have a red border. She decides that, by this metric, her six sentences

(Figure 8.6e) are an appropriate representation of the content in the original text.

8.4.2 Visual and Interaction Design

We designed the text summarization prototype (CSI: Summarization) such that text occupies the

majority of screen estate as the central carrier of information for the task. Two central panels (Fig-

ure 8.3a,c) represent input text and output text. Each text box represents words that are aggregated

into sentences. Text highlights in the input show information about the model hooks and relations

between input and output. Neutral gray colors are used on the output side to clearly distinguish them

from the blue colors that represent selections on the input (Figure 8.3c).

The input and output text are connected by a bi-partite graph that indicates model attention (Fig-

ure 8.3b), which expands on previous work on visualizing and normalizing attention (Strobelt et al.,

2018a, Lin et al., 2018). Due to the length of source documents, displaying the entire graph is not fea-

sible or informative. Therefore, we use two design elements to enable users to observe the full graph

in a de-cluttered view: aggregations and proxies. First, we allow the aggregation of words into mean-

ingful word groups, e.g., sentences, that can be dissolved on demand (Figure 8.7d) if this level of detail

is required. Aggregating words implicitly requires the aggregation of the attention which simplifies

the graph. Secondly, we represent sentences by a vertical arrangement of boxes that are space-filling in

height and which act as proxies for the full sentences. In that way, all sentences are always visible by

their proxy, evenwhen they are outside the display area. These proxiesmirror selections and highlights

of their related text boxes.

CSI: Summarization offers a range of user interactions. As a general principle, buttons trigger for-
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ward (left to right) actions (Figure 8.3e) because a forward inference can change the output summary

itself. Unintended changes to theoutput could confuse theuser. To let users explicitly request updates

instead of automatically intervening is inspired by similar mixed-initiative writing assistants (Babaian

et al., 2002), where researchers found that this type of interaction is seen as least intrusive. All back-

ward inferences are automatically triggered after exiting the editmodebyhitting enter. Sincebackward

interactions do not change the content of the summary, the automatic invocation does not lead to ac-

cidentally overwriting important information. Users can define which sentences or words to consider

for generating the next sentences by selecting them (blue color). Clicking on the bar on the right of

an aggregation group selects or deselects the entire group. The same action is triggered by clicking on

the proxy element of the corresponding sentence (Figure 8.3d).

The interface additionally provides three selection templates (Figure 8.3h) for convenience: select

all sentences, select no sentence, or select only those sentences that match the selection from the back-

ward step (match red and blue). For the forward pass, the selection can be used to either initialize a

new summary with a user-selected number of sentences (init with) or to add a sentence to the exist-

ing summary (add sentence) (Figure 8.3e). On the output side, sentences can be deleted or edited by

clicking the edit and delete buttons at the end of each sentence.

8.4.3 Design Iterations

During the creation of the prototype, we explored multiple designs for model hooks, visualizations,

interactions, and their integration. Overall, we found that CSI systems are more difficult to design

because of the, sometimes competing, interactions between all these elements. We want to highlight

one example for each of the elements.

On the model side, our initial backward inference had good accuracy but did not reveal useful

information within the interface. Only after re-allocating efforts to develop a different model with

a much higher performance did the backward model match human intuition. Since model hooks
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(a)

(b)

(c)

(d)

Figure 8.7: Visual design itera ons for CSI:Summary. (a) shows radio bu ons for selec ng a specific selec on (content
selec on vs. backward model). In (b), we introduced a mixed mode that showed the user content selec on in the fi-
nal blue color and the result from the backward model with a red highlight (c). Underlines later replaced the dominant
highlight. (d) shows an example of the complexity of the a en on graph without any aggrega on.

complicate the machine learning models, it also complicates their training process. This can lead to

issues where the model decisions are not useful to human end-users which can result in a decreased

overall efficiency.
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On the visualization side, we explored multiple different designs for the input selections presented

in the interface. The selections we currently show are (1) the selection that was used for the most

recent forward step, (2) the selection that was returned from the most recent backward step, and (3)

the sentences that theuser is selecting for thenext forwardpass. In afirst iteration,we aimed to showall

of them in separate views (Figure 8.7a), and additionally have a view that highlights their intersection

(Figure 8.7b,c). Pilot studies revealed that only the combined view was useful to users to avoid having

to switch forth and back. We, therefore, replaced the different views by the current more natural and

coherent use of red and blue highlights within the same view. This iteration illustrates the challenge

that the information from themodel requires an appropriate visual representationwithin an interface.

the developers of CSI interfaces need to consider the necessary abstraction between model internals

and end-users intuitive understanding.

On the interaction side, we found that requesting that the model generate words without a con-

straint on the minimum or the maximum number of sentences often led to output that was unreason-

able to users by repeating itself or being ungrammatical. The model architects on our team pointed

out that the training data for summarization models rarely contains examples where the summary is

longer than three sentences. Forcing a model to generate longer summaries than it was trained to gen-

erate led to degradation in output quality. We also found that users had more control over the content

of a summary if they iteratively built up a summary from a short initial suggestion instead of having

the model suggest a lengthy summary and letting the user change it afterward. Our current modes

combine these findings by designing the interaction after discussions with model architects and visu-

alization experts. The first interaction initially generates a small number of sentences. This leads to

better model output and also lets users explore the output space more effectively. Similarly, adding

one new sentence at a time by incorporating previous sentences as prefix context and allowing users

to select the content enables users to quickly generate and review new content.
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Figure 8.8: CSI interfaces require a design process that spans machine learning and visual interac on design. The feed-
back loop is used to produce interpretable seman c representa ons that inform the reasoning procedure of the model
while providing useful visual interac on.

8.5 Towards a Co-Design Process for CSI Systems

During the implementation of theCSI:Summarization prototype we developed an understanding of

how an integrated design process for CSI systems could look and also experienced its limitations. We

discuss our insights as learned lessons.

Prioritize collaborative output. CSI systems enable joint production by model and end-

user together. The resulting output must be the central element for developing visualization and in-

teraction ideas. It is essential to evaluate if a CSI approach is beneficial for a given task, e.g., a face

recognition model used to unlock a cell phone does not benefit from the CSI approach as no shared

output is produced. Since CSI methods are decision-shaping, they require human oversight and in-

terventions and are thus not suited for processing massive data. Moreover, since CSI interfaces are

targeted at end-users, the visualization can be domain-specific but should abstract model-internals in

an intuitive way. Finally, no agent should dominate over the other to allow model-human collabora-

tion, which should be reflected in the visualization and interaction design – e.g., allowing equal easy

access to triggers for human input and model suggestions.
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Co-design requires continuous evaluation. In the development of the summarization

system, there was a constant negotiation between visualization requirements and model capabilities.

This process led to iteration on the question: “does this visual encoding help the end-user collaborat-

ing with the model?” and “which additional model behavior do we need to help to encode relevant

information?”. Figure 8.8 illustrates how this continuous co-design forms a bilateral relationship be-

tween model design and visualization design. CSI systems, like most visual analytics systems, can help

to reveal model problems immediately. If, for example, a specific model hook is performing so poorly

that it cannot facilitate the user’s mental model, it will be immediately revealed. On the other hand,

requirements for a visualization might over-constrain a model such, that it breaks. E.g., creating a

system for writing poetry that suggests lines of text that rhyme, even for human entered text, might

over-constrain the model. CSI systems aim to find the middle ground between the ideal user experi-

ence and what is possible with the underlying ML model.

CSI may be a worthwhile investment. Since CSI is centered around a single abstraction that

reflects the mental model that an end-user has of a problem, we propose thatmachine learning experts

need to study possible interactions. There is currently a limited understanding of the space of easily

trainable hooks and interaction strategies. Sincemachine learning techniques do not natively consider

bidirectional interactions with end-users, the visualization, interaction design, and machine learning

experts need to teach each other about desired interactions and the limits of deep models. Deep learn-

ing models with hooks thus lead to an increased development complexity for both machine learning

and visualization experts. However, during the development of the summarization use case, we also

experienced that CSI has a learning curve. While CSI systems are individualized to a problem and

thus one-of-a-kind systems, most of the techniques are transferable and a research or product team

can apply the insights gained from one CSI project to the next one. Moreover, the long-term bene-

fits of the increased control over models can justify the additional development complexity, especially
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considering that many applications in industry are used for many years. As shown in our summa-

rization example, the CSI methods can even lead to more structure and subsequent improvements in

outcomes.

8.6 Conclusions

In this chapter, we introduced a framework for collaborative semantic inference, which describes a

design process for collaborative interactions between deep learning models and end-users. Interfaces

designed within this framework tightly couple the visual interface with model reasoning. We applied

CSI to develop a collaborative system for document summarization that demonstrates that CSI sys-

tems can achieve powerful interactions within an interface powered by a neural model.

While previous studies have shown that explainability methods can mediate in an agency-efficiency

trade-off (Lai and Tan, 2019, Yin et al., 2019), none of them demonstrate a way for users to retain

agency while gaining the efficiency benefits of models interaction. We believe this is due to the diffi-

culty of engaging the user in the prediction process of a black-box model. We address this problem by

designing semantic interactions as part of the model itself. While CSI does not solve problems with

biased data and models or the lack of interpretability of models, it aims to expose important model de-

cisions and facilitate collaboration between an end-user and the model to take these decisions. Further

developments in interpretability research could be used in conjunction with CSI for a better overall

model understanding.

The CSI framework significantly expands the interaction design space over conventional interac-

tion strategies for many deep learning models. CSI-style approaches have the potential for application

especially in scientific or safety-critical applications where explainable AI may become mandatory.

Moreover, since CSI treats the model as a team member, another area of particular interest are cre-

ative applications, where models can assist users in creating stories (Fan et al., 2018), chord progres-
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sions (Huang et al., 2019), or even recipes (Kiddon et al., 2016). Future work might also investigate

how similar principles could support cases where more than a single end-user and a single model aim

to collaborate.

Finally, it is crucial to develop ways to systematically evaluate collaborative interfaces and to in-

vestigate the implications of designing algorithmic interactions with humans (Wilks, 2010, Williams,

2018). While an interpretability-first approach could assist in highlighting fairness and bias issues in

data or models (Hughes et al., 2018, Holstein et al., 2019), it could also introduce unwanted biases by

guiding the user towards what the model has learned (Arnold et al., 2018). It is thus insufficient to

limit the evaluation of a system to measures of efficiency and accuracy. Future work needs to address

these shortcomings by developing nuanced evaluation strategies that can detect undesired biases and

their effect on end-users.

We provide a demo, the code, and the required models for CSI:Summarization at www.c-s-i.ai.
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9
Discussion and Conclusion

Throughout this dissertation, we have presented approaches that aim to improve the generation of

natural language by computer systems that deploy neural network technology. We have discussed

approaches for the interpretation of the models. Finally, we have developed a way to collaborate with

these models. However, as neural architectures become more powerful, we also need to consider the

implications of these models. Two important questions arise related to the evaluation of generated

text and the prevention of abuse of the models.
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9.1 The evaluation of text-generating models

In supervised machine learning tasks, a generated text is usually compared to one or multiple human-

written reference texts. Evaluationmetrics are basedon the lexicalword-overlapbetween the generated

text and the reference. Some tasks like machine translation use precision-based metrics like BLEU (Pa-

pineni et al., 2002), and some tasks like summarization use recall-based metrics like ROUGE (Lin,

2004). The goal is to capture the performance of a model with a single number. Recall for example,

that the summarization model presented in Chapter 7 led to a consistent 2-point improvement in

ROUGE score. While this improvement in ROUGE score is a strong signal, there are two issues we

address below: (1) It does not work in all types of writing tasks. (2) The metrics are flawed.

Many NLG tasks do not have a single correct answer. Consider story-generation. Stories are sup-

posed to be engaging and to capture the reader’s undivided attention. They need to have consistent

characters and a consistent timeline of events. They are not, however, supposed to have a significant

overlap with what some writer has decided is the “correct” story for a given set of constraints. For that

reason, it is not possible to apply automatic metrics to tasks like story-generation.

A similar example is that of abstractive summarization. The models we discussed in Chapter 7 are

trained on news summarization tasks which are inherently extractive. News articles are written in a

manner that presents a compressed version of the events at the beginning of the article. That means

that there is a high overlap between the summary and the article. However, other summarization

tasks, for example, for the generation of scientific abstracts (Cohan et al., 2018) or the summary of

human-written social media posts (Völske et al., 2017), are more open-ended.

The second issue is that automatic evaluationmetrics are oftenflawedormaybeused inunintended

ways. For example, ROUGE was initially used to compare length-constrained summaries, where

each summary could have a maximum length of 75 bytes, which is approximately 14 words (Over

et al., 2007). This restriction no longer exists. However, since ROUGE is a recall-based metric,
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it strongly encourages capturing as many phrases from the reference summary as possible. Conse-

quently, ROUGE gives an advantage to systems that produce longer summaries, which makes it im-

possible to compare different systems if they do not produce summaries of the same length (Sun et al.,

2019). Some metrics have been proposed that aim to evaluate generated text with references and do

not suffer from such drawbacks. For example, Zhang et al. (2019b) use the similarity in contextualized

representations of reference and generation instead of computing lexical matches. Eyal et al. (2019)

evaluate whether a question-answering model can identify entities in a reference summary from the

information in the generated summary. However, these metrics still assume that a reference exists that

exhibits all the desired properties of the generated text. The automatic evaluation of generated text

thus remains an unsolved challenge.

An alternative approach for the evaluation of generated text is to conduct human-subjects studies.

We identified two different strategies that can be used for the evaluation of generated text:

Focused User Studies When aiming to capture properties of text with automatic metrics, we

often overlook how the generated text affects its readers ability to accomplish a task. Consider the

journalist Anna who aims to summarize her article. If an assistive system is used to generate the first

version of her abstract, this suggestion might affect her view of the article. For example, if the sugges-

tion has a more negative sentiment than she intended, it might subconsciously bias her. Similar effects

have been found for assistive keyboards, which can affect the sentiment and length of texts that users

produce (Arnold et al., 2018).

One particularly exciting direction is measuring the effect that the text has on end users. For ex-

ample, in previous work, we aimed to improve the understanding of long documents through the

generation of section titles for each paragraph (Gehrmann et al., 2019b). A human-subjects study

was conducted to compare not showing titles, human-generated titles, and automatically generated

titles. For each subject, we further varied the difficulty level of the documents and asked them to
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complete three different tasks related to document understanding: finding information, memorizing

information, and summarizing the document. Through an analysis of the results, we found that there

were only small effects on the accuracy of the finding and memorizing tasks, but significant effects on

the time spent on these tasks.

Moreover, the summaries subjects generated when shown titles, were generally longer and more

detailed, although the writing took less time. We further identified a profound difference between

human- and machine-written titles. While the generated titles reduced the time for the information-

related tasks more, the human-written titles had a more substantial effect on the summarization tasks.

We hypothesize that the different effects stem from the different levels of abstractiveness of the sum-

maries. Thehuman summaries providehigh-level overviewsover the contentof theparagraph,whereas

our generation process compresses a single sentence and thus focuses on the content rather than the

story. Investigations like this are only possible through user studies. However, due to the monetary

cost and the difficulty of designing focused user studies, it is often challenging to get insights across a

broad sample of the intended user group. In this case, long-term user studies can be beneficial.

Long-Term User Studies An alternative way to capture feedback for a collaborative tool is to

release an early version to a select groupof testers or to release the tool to the general population. There

are two conditions to consider for this evaluation path. First, it has to be ensured that the tool is well

explained and documented. Often, users can find unintended ways to use a tool or misunderstand

crucial aspects. While this can have beneficial consequences (see Chapter 5), it can also cause harm.

The release can gather media attention which can lead to a misrepresentation of AI to the public, if

not adequately explained. Other tools could be abused directly, for example, interactive generation

tools for fake news articles (Zellers et al., 2019). It is thus crucial to verify the tool with a smaller group

of testers of the prototype.

However, if a tool gathers enough interest, long-term user studies are a useful way to evaluate its
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efficacy. The release should be accompanied by many possible opportunities to provide feedback,

for example, through email, online discussions, social media, and GitHub issues. This feedback, in

conjunction with an evaluation of the server logs (in accordance with privacy laws), can be used to

substantially improve the tool. A disadvantage of this strategy is that the feedback is often undirected

and noisy. Given the broad user group for a typically highly specialized tool, it is impossible to ask

focused questions. In this case, a smaller user study might be more appropriate.

9.2 The ethical permissibility of text-generating models

As mentioned above, the abuse of collaborative interfaces becomes more likely as the text-generating

models become more powerful (Brundage et al., 2018). In fact, research on scaling models to an un-

precedented scale sparked a discussion around whether these large models should even be available to

anyone (Radford et al., 2019). The underlying argument is whether powerful text-generating models

are inherently harmful. Generated text from unconditionally trained language models has reached a

point at which it is nearly indistinguishable from human-written text. While it is not currently pos-

sible to direct the content of the generated text, the controllability methods are rapidly advancing.

Models like Grover (Zellers et al., 2019) and CTRL (Keskar et al., 2019) can generate text in a specific

style and content by conditioning on certain control tokens. Human-like generated text has substan-

tial implications for how online reviews, news, or opinions should be perceived. Moreover, it also

has implications for the broader research community. Since NLG models are technologies with both

beneficial and malicious applications, we need to consider how to prevent the malicious use of the

technology.

Since these developments are recent, there are no common ethical guidelines that direct NLG re-

search. In a survey, Fort and Couillault (2016) found that, while over 52.5% of researchers feel re-

sponsible for the use of the methods they develop, they point out that ethics is rarely included in
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conferences and that the implications on society are rarely discussed in research papers. Over 91%

of respondents in the survey by Fort and Couillault believe that the public is insufficiently informed

about the limits and possibilities of the tools we create. NLG researchers thus must develop these

guidelines and inform the public about the possibilities of generated text. One complicating factor

toward the ethical behavior of neural network-based systems is the trade-off between accuracy, robust-

ness, and transparency (Thieltges et al., 2016). For example, the increasing parameter sizes of language

models led to more natural text but made the models less interpretable. We argue that the develop-

ment of inherently interpretable neural architectures, as suggested in Chapter 8, is crucial to address

and potentially side-step the trade-off. This statement is further corroborated by Wilks (2010) who

argues that because algorithms will never be perfect, they should work together with humans instead

of replacing them. As part of this collaboration, the artificial agents should be designed to be aware of

their limitations and be able to ask clarifying questions (Williams, 2018).

However, even collaborative systems rely on thedevelopmentof autonomousmethodswhich should

be regulated through a set of ethical guidelines. The most relevant existing guidelines can be found in

the ethics of algorithmic journalism. Dörr and Hollnbuchner (2017) analyze and provide an overview

of commonly found ethical issues of the automatic content generation in journalism, based on a

framework by Weischenberg et al. (2006) and using the ethical system introduced by Pürer (1992).

While this analysis is mostly concerned with rule-based NLG, it addresses many of the issues of neural

NLG. For example, Dörr and Hollnbuchner state that two of the most commonly seen issues are (1)

the hallucination of information, and (2) missing information that leads to uninformed or biased out-

puts. Both of these problems frequently occur with neural NLG. They argue that an NLG system is a

relatively autonomous actor with a delegated (moral) agency, which means that the organization that

uses the system is responsible for its ethical behavior. Moreover, each journalist is responsible for their

moral actions, guided by the principles of objectiveness, transparency, and accuracy. That means that

they need to be able to supervise the systems that automate part of their duties to ensure that their
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outcomes comply with these principles. The requirement for supervision further motivates CSI-like

approaches where journalists retain the agency over the automated process.

This analysis uncovers two challenges. We need to ensure that an autonomous agent is comply-

ing with the ethical principles on a global level. As a result, we need affordances in the model that

assist the individuals in ensuring that the model is exhibiting ethical behavior. The supervision of the

autonomous agent by a human agent requires the careful design of mechanisms for explainability, as

discussed inChapters 3-6. To analyze and verify the compliance on the global level, Smiley et al. (2017)

identify potential consequences across four categories: Human consequences, data issues, generation

issues, and provenance. These categories capture whether the generated text disadvantages anyone or

violates anyone’s privacy by producing otherwise not disclosed information about them. It identifies

the bias in the training data and problematic generations in style and content. It further evaluates

whether the methods and the data are appropriately disclosed.

To capture the potential consequences of applying a model, Smiley et al. argue for the application

of a checklist. However, many of its questions arise from the specific model that is being applied. As a

result, this suggestion requires the creation of a customized checklist for each model. Such checklists

require additional expertise, which leads to the question who is creating them. In follow-up work,

Leidner and Plachouras (2017) discuss whether ethics review boards (ERB), similar to those review

boards related to human-subjects studies (Enfield and Truwit, 2008), could be in charge of the check-

lists and ensure that a suggested research project does not lead to unintended consequences. They

further point out that the same project may need to validated at multiple stages in a corporate devel-

opment process: during the research phase, product development, and deployment.

The iterative nature of validation, along with the project- and model-dependent checklists, leads to

a highly resource-intensive process that only some large institutions can afford.1 However, the whole

field of AI research could benefit from more oversight and guidance on the ethical permissibility of

1Some large companies already have ERBs in place.
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research proposals. It is thus an open issue for the community of AI researchers to decide whether to

create and require ERBs, which rules they impose, and whether they will be run by a central entity or

individual institutions.

Another challenge of ethical oversight is to agree on the principles that should guide the evaluation

for ethical permissibility of NLG systems. As a first attempt to summarize the concerns by Smiley

et al. and those mentioned throughout this dissertation, we suggest the following three principles for

NLG:

Harmless No text-generating system should be able to generate output that can lead to harm being

done to any person or entity.

Fair and Bias-free A text-generating system should treat each individual, group, and community

fairly and without bias pertaining to their person or occupation.

Controlled Autonomy Atext-generating system should havemoderationmechanisms that enable a

person to overwrite, control, and dismiss its output if it violates one of the other twoprinciples.

As discussed throughout this dissertation, all current models violate the first two points and could

thus be seen as unethical, even if unintentionally so. We, therefore, introduce the third point to enable

the intervention in harmful output and specify that the violation has to be intentional. It remains an

open challenge how to address the unintentional violations of the first two principles across models

and tasks. However, research should aim to minimize the violations of the first two points by devel-

oping technology that mitigates biases in neural models. Moreover, any research on something that is

a dual-use technology should be accompanied by efforts to prevent its abuse.

As the potential for misuse of NLG technology grows, we require stronger prevention mechanisms

that aim to detect this abuse. For example, if the output of a neural network had a detectable signa-

ture, similar to a fingerprint, we could verify that a text was not generated by that model. Much recent
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research aims to solve this problem, for example, by training classifiers that distinguish between gen-

erated and human-written text (Zellers et al., 2019, Bakhtin et al., 2019).

As an alternative approach, we applied the design of collaborative systems to the problem and de-

veloped an interface that assists humans in deciding whether a text was generated (Gehrmann et al.,

2019c). We demonstrated that through collaboration, we were able to educate people about the abuse

of language models, addressing the education issue pointed out by Fort and Couillault. A human-

subjects study showed that it improved the human detection ability from 54%, barely above random

chance, to over 72%. While GLTR does not solve the issue of neural fake news, the combination of

autonomous and collaborative systems can be used to address the abuse of language models.

Similar collaborative techniques might be able to help identify harmful inductive biases in models

and address some of the other ethical issues that arise from powerful NLG models.

9.3 Collaboration in other domains

While this dissertation is focused on use cases in NLG, the collaboration principles can be applied to

other domains that benefit from the generation of content with neural networks. A field that uses

very similar models is computational biology, specifically the computational modeling of proteins.

Proteins are typically represented as strings of characters. Large language models for proteins can

learn biological structures and functions (Rives et al., 2019). That means that there is potential for

collaborative tools for the detection of proteins with specific properties that can be used to accelerate

drug development (Sercu et al., 2019).

Another domain with applications of collaborative models is computational creativity. For exam-

ple, Bau et al. (2019) developed a collaborative tool where a painter can semantically interact in an

image by drawing “concepts”. For instance, if artists want to add a tree to the image, they draw the

concept of a tree on the image, but the model inserts its version of a tree. This comparison relates to
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the theory of forms in philosophy where a physical manifestation is not as real as its intangible idea. In

their current form, neural networks are merely presented with numerous manifestations to learn the

“typical” look of an object. However, they fail at learning the concept, as can be shown by their failure

to paint objects in environments where they are typically not seen (Bau et al., 2019). Continuing the

argument from above, this leads to major ethical concerns about these tools, as historical paintings

depict a biased view of the world. Biases in datasets lead to discrepancies between the classification ac-

curacy of people of different race or gender in other computer vision tasks (Buolamwini and Gebru,

2018). It will thus require much more work to truly be able to paint in concepts.

One can imagine many other domains where collaboration can benefit end users more than full

automation and where the retention of human agency is crucial to the success of a task. However,

it will only be possible to imagine medical or financial applications once these ethical concerns are

appropriately addressed.

9.4 Conclusion

Throughout this dissertation, we have argued for deep neural networks that are designed as partners

to humans instead of autonomous agents. Such collaboration is characterized by the ability to explain

a system’s prediction and to adjust the prediction in response to feedback from a person. However,

current deep neural architectures are not designed in ways that enable them to collaborate. We intro-

duced two necessary conditions for collaboration: interpretability and controllability.

An interpretable model is one that can explain its prediction in a way that a human can under-

stand. It is challenging to develop explanations that mesh with the mental models that humans have

of a problem. We identified in a case study of patient phenotyping that the meshing of model behav-

ior and human understanding is especially important when the human end users do not agree with a

prediction by the model. We showed that this challenge can be addressed through interaction, where
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humans do not only observe a single explanation but instead get to change inputs and constrain out-

puts of the model. We demonstrated in two case studies of interactive systems that such interactions

enable people to develop a mental model of a machine learning model’s behavior and helps them un-

derstand the limitations of the model.

We next proposed using discrete latent variables as a way to make models controllable. Models

have to reason over all potential values that the variable can have, and use the value in any downstream

reasoning it. By constraining or overwriting the value of the latent variable, humans can control the

output of the model without changing the inputs. The latent variables can even be used to explicitly

model an aspect of a problem that the standard model struggles to account for. We demonstrated that

this approach can lead to better performance of a summarization model.

We further showed how to tie the latent variables to semantic interactions within an interface and

developed a collaborative summarization interface. This tool represents one of the first collaborative

deep learning interfaces.

Moving forward, we need to solve many more challenges to enable collaborative interface across all

potential use cases. Most importantly, the methods underlying the deep latent variable models have

only recently become expressive and stable enough to be used in real-world applications. Many more

algorithmic and optimization improvements are required for them to become general-purpose tech-

niques that can be applied to any model. Moreover, there are still many issues related to autonomous

text generation that need to be solved, for example, the evaluation issue.

In light of the ethical challenges surrounding the training of machine learning models on corpora

that comprise undesired biases, much more work is required to develop policies surrounding these

powerful models that lead to ethical applications and prevent malicious use. Further, future work

must introduce methods to prevent NLG models from generating unethical output that contains,

for instance, factual mistakes or biased representations.
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